A RESEARCH SUPPORT SYSTEM FRAMEWORK FOR WEB DATA MINING

Jin Xu, Yingping Huang, Gregory Madey
Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556

WSS'03: WI/IAT 2003 Workshop on Applications, Products of Web-based Support Systems
October 13, 2003, Halifax

This research was partially supported by NSF, CISE/IIS-Digital Society and Technology
OUTLINE

- INTRODUCTION
- FRAMEWORK OVERVIEW
- INFORMATION RETRIEVAL
- DATA MINING TECHNIQUES
- CASE
- CONCLUSIONS & FUTURE WORK
INTRODUCTION

- **World Wide Web**
 - Abundant information
 - Important resource for research

- **Web Data Features**
 - Semi-structured
 - Heterogeneous
 - Dynamic

- **A Research Support System for Web Data Mining**
FRAMEWORK

Source Identification → Content Selection → Information Retrieval → Data Mining
INFORMATION RETRIEVAL

- Searching Tools
 - Directory
 - Search engine
- Web Crawler
 - URL access method
 - Web page parser
 - Table extractor
 - Link extractor – absolute links/relative links
 - Word extractor
DATA MINING FUNCTIONS

- Association Rules
 - Find interesting association or correlation relationship among data items

- Classification
 - Predict classes
 - Two steps – build model, apply model

- Clustering
 - Find natural groups of data
OPEN SOURCE SOFTWARE

- Open Source Software (OSS)
 - Apache, Perl, Linux
 - Developed by part time contributors
- SourceForge Developer Site
 - Sponsored by VA Software
 - Largest OSS development site
 - 70,000 projects
 - 90,000 developers
 - 700,000 users
DATA COLLECTION

- **Data sources**
 - Statistics, forums

- **Project statistics**
 - 9 fields – project ID, lifespan, rank, page views, downloads, bugs, support, patches and CVS

- **Developer statistics**
 - Project ID and developer ID
DATA COLLECTION (Cont.)

- Web Crawler
 - Perl and CPAN
 - LWP – fetch pages
 - HTML parser – parse pages
 - HTML::TableExtract – extract information
 - Link extractor – extract links
DATA MINING

- Association Rules
 - “all tracks”, “downloads” and “CVS” are associated

- Classification
 - Predict “downloads”
 - Naïve Bayes – Build Time 30 sec, accuracy 9%
 - Adaptive Bayes Network - Build Time 20 min, accuracy 63%

- Clustering
 - K-means: User specified number of clusters
 - O-cluster: Automatically detect the number of clusters
CONCLUSIONS

- Conclusions
 - Build a framework
 - Describe procedures
 - Discuss techniques
 - Provide a case study

- Future Work
 - Exploratory study
 - Implement all stages