Agent-Based Simulation of Biocomplexity: Interactions of Natural Organic Matter, Mineral Surfaces, and Microorganisms

Gregory R. Madey
Department of Computer Science and Engineering

Patricia A. Maurice
Department of Civil Engineering & Geosciences
Center for Environmental Science and Technology
Natural Organic Matter

- Forms primarily from the breakdown of organic debris
- Consists of a complex mixture of heterogeneous molecules that varies spatially and temporally
- Is ubiquitous in aquatic and terrestrial environments
- Serves as a primary C source to ecosystems
- Binds metals, radionuclides, organic pollutants and helps to control their mobilities
- Acts as a natural ‘sunblock’ in surface waters
- Defies simple analysis and deterministic, \textit{ab-initio} modeling because of complex, variable structure.
NOM has complex, variable structure

NOM model (Leenheer)

Fluorescence EEM, NMR spectra
Forest Service Bog (FSB) [DOC] 7 MW 2200

Twomile Creek (TMC) [DOC] 17 MW 1500

Nelson Creek (NLC) [DOC] 79 MW 900
Many processes affect NOM properties

- Adsorption
- Photodegradation
- Coagulation
- Biodegradation
- Primary production
This complexity lends itself well to ‘biocomplexity’ modeling, agent-based models.

- System heterogeneity controls reactivity
- High degree of spatiotemporal variability
- Complex and cooperative interactions between different components and processes
- Need for scaling between laboratory and field experiments
- Two approaches being used in this model:
 - Composition-based modeling
 - Molecular weight (Mw)-based modeling
Effects of Molecular Weight on NOM Properties and Reactivity

Lower Molecular Weight Components
- Nanopore absorption
- Greater bioavailability
- Increased mobility
- Fast diffusion
- Rapid sorption

Higher Molecular Weight Components
- Small radius
- More aromatic
- More hydrophilic
- Enhanced HOC Uptake
- Higher ψ_{el}
- Greater Metal Binding
- More ligands per molecule
- Increased K_{ads}
- Decreased mobility

Molecular Weight Distribution
NOM concentration, Mw generally decrease from soils into ground water depth below land surface
NOM adsorption to minerals and bacteria decreases with increasing pH.
Adsorption fractionates NOM
Preferential adsorption of high Mw components

Decreased % sorption----->
Challenges for Research into Biocomplexity

- Heterogeneity of system components
 - Component identities only partially known
 - Often cannot assume homogeneity, averages, aggregate values, or simple distributions; cannot ignore individual differences

- Complex interactions between components
 - Processes and signaling pathways only partially known
 - Often cannot assume a well mixed solution, spatial independence

- Complex interactions with environment
 - Dynamic coupling/feedback between components and system
 - Phenomena at different system levels

- Limitations of
 - Equation-based modeling
 - Reductionism (complexity \rightarrow emergence \rightarrow scaling problems)
 - Sensitive dependence to initial conditions
New Computer Capabilities —>
New Methods for Science

• Faster/cheaper/more CPUs —>
 Individual-based/Agent-based Modeling
 - Stochastic modeling
 - Discrete event simulation

• Bigger/cheaper/more Disk Drives —>
 Data warehouses/Data mining
 - Sensor nets
 - High dimensional, merged data sets
 - Data from simulations
 - Computer-assisted discovery
Agent-based Modeling and Simulation

- Individual-based modeling (IBM)
- Discrete event simulation
- Stochastic birth-death models (SBD)
- Cellular automata (CA)
- Artificial Life (AL)
Focus of our NOM Modeling

Inputs
- Soil
- NOM
- Microbes
- Surface Water

Outputs
- Ground Water

NOM — Microbes

Soil

Surface Water
Prior modeling work often too simplistic to represent NOM heterogeneity and its complex behaviors in ecosystems (e.g., carbon cycling models, nitrogen cycling models)

Prior modeling work often too compute-intensive to be useful for large-scale environmental simulations (e.g., molecular models employing connectivity maps or electron densities)

Hence, a Middle Computational Approach is taken ...
Modeling

- Molecules and microbes are objects
- Molecules and microbes have attributes
 - Heterogeneous, distributions
 - Currently 1,000 objects, testing 10,000 and more
- Molecules have behaviors (reactions)
 - Molecules in simulation are a representative sample of the larger population
 - Behaviors are stochastically determined
 - Dependent on the:
 - Attributes (intrinsic parameters)
 - Reaction rates
 - Environment (extrinsic parameters)
Modeling (cont)

• **Objects of interest**
 – Macromolecular precursors
 • Polysaccharides
 • Proteins
 • Polynucleotide, tannin, lignin, polyterpene, cutin
 – Smaller molecules
 • Phospholipids
 • Sugars
 • Amino acids
 • Flavonoids
 • Quinones
 – Microbes
Modeling (cont)

• Attributes
 – More specific than “percent carbon” but less detailed than a molecular connectivity map
 – Elemental composition
 • Number of \(\text{C, H, O, N, S} \) and \(\text{P} \) atoms in molecule
 – Functional group counts
 • Double-bonds
 • Ring structures
 • Phenyl groups
 • Alcohols
 • Phenols, ethers, esters, ketones, aldehydes, acids, aryl acids, amines, amides, thioethers, thiols, phosphoesters, phosphates
 – The time the molecule entered the system
 – Precursor type of molecule
Modeling (cont)

• **Behaviors (reactions and processes)**
 – Physical reactions
 • Adsorption to mineral surfaces
 – Initial adsorption
 – Surface migration to high-energy sites
 – Hemi-micelle formation at high coverage (cooperative, hydrophobicity dependent)
 • Aggregation/micelle formation (e.g., metal cation-induced aggregation) - flocs
 • Transport downstream (surface water)
 • Transport through porous media
 • Volatilization
Modeling (cont)

- Behaviors (reactions and processes)
 - Chemical reactions
 - Abiotic bulk reactions
 - Hydrolysis
 - Hydration
 - Ester condensation
 - Thermal decarboxylation
 - Abiotic surface reactions
 - Direct photochemical reactions
 - Indirect photochemical reactions
 - Extracellular enzyme reactions on large molecules
 - Bacteria
 - Fungi
 - Algae
 - Microbial uptake by small molecules
Modeling (cont)

• Environmental parameters
 – Temperature
 – pH
 – Light intensity
 – Metal concentrations (e.g., Al and Fe)
 – Bacterial activity
 – Water flow rate/pressure gradient

• Environment: 2D Grid, mineral surfaces, soil pores

• Simulation parameters: run time, data collection
NOM 1.0

- **Visualization**
 - Simulation and Animation of Molecules

- **Web-Based Access**
 - Standard Browser Interface
 - HTML Forms / JSP
 - Java Servlets
 - JDBC - Oracle Database
 - Oracle Forms and Reports
 - Shared Data and Simulations
 - Collaboration Support: Web-board, Chat, mail server, file upload/download
Web Access to NOM Simulation
Visualization

Black - No Adsorption
Grays - Levels of Adsorption
Red - Lignins
Green - Cellulose
Blue - Proteins
Yellow - Reacted
Orange - Adsorbed
Visualization - NOM molecules in solution and adsorption
Web Browser Setup

Welcome to NOM Research Group!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Make it available to public</th>
<th>New environment set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Time</td>
<td>50</td>
<td></td>
<td>Please specify your new environmental variables.</td>
</tr>
<tr>
<td>Molecule Density</td>
<td>0.05</td>
<td></td>
<td>(*) Required Fields</td>
</tr>
<tr>
<td>Microbe Density</td>
<td></td>
<td></td>
<td>Every field must be a real number.</td>
</tr>
<tr>
<td>Fungal Density</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKW</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Density</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Density</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Create New Environment Set]
Welcome to NOM Research Group! Leilani Arthurs

NOM Simulator: Molecules

Below are all available molecule types, please choose the molecule types and specify the percentage of each. You can click **here** to create a new molecule type.

Available molecule types:

<table>
<thead>
<tr>
<th>Choose it</th>
<th>Molecule type</th>
<th>What is it?</th>
<th>Percentage</th>
<th>Edit or Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cellulose</td>
<td></td>
<td></td>
<td>edit</td>
</tr>
<tr>
<td></td>
<td>Lignin</td>
<td></td>
<td></td>
<td>edit</td>
</tr>
<tr>
<td></td>
<td>Protein</td>
<td></td>
<td></td>
<td>edit</td>
</tr>
<tr>
<td></td>
<td>NoFA</td>
<td></td>
<td></td>
<td>edit</td>
</tr>
<tr>
<td></td>
<td>1ficFA</td>
<td>∙</td>
<td>5</td>
<td>edit</td>
</tr>
<tr>
<td></td>
<td>2ficFA</td>
<td>∙</td>
<td>20</td>
<td>edit</td>
</tr>
<tr>
<td></td>
<td>3ficFA</td>
<td>∙</td>
<td>50</td>
<td>edit</td>
</tr>
<tr>
<td></td>
<td>4ficFA</td>
<td>∙</td>
<td>20</td>
<td>edit</td>
</tr>
<tr>
<td></td>
<td>5ficFA</td>
<td>∙</td>
<td>5</td>
<td>edit</td>
</tr>
</tbody>
</table>
Welcome to NOM Research Group!

(Required fields)

Molecule Name

<table>
<thead>
<tr>
<th>Atom</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>O</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>64</td>
<td>0</td>
<td></td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Atoms of the molecule
Each field must be a non-negative integer. Default value is 0.

Functional groups of the molecule
Each field must be a non-negative integer. Default value is 0.

<table>
<thead>
<tr>
<th>DoubleBond</th>
<th>Rings</th>
<th>Phenyl</th>
<th>Alcohols</th>
<th>Phenols</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethers</th>
<th>Esters</th>
<th>Ketones</th>
<th>Aldehydes</th>
<th>Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ArylAcids</th>
<th>Amines</th>
<th>RingN</th>
<th>Amides</th>
<th>Thioethers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thiols</th>
<th>Phosphoesters</th>
<th>HPhosphoesters</th>
<th>Phosphates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Create New Molecule Type
Visualization

Color coded molecules
- Solution
- Adsorbed
- Mw
Web-based Reports

Please provide the following information.
Current Time Step is: 1969

<table>
<thead>
<tr>
<th>Time Step:</th>
<th>Status: adsorbed</th>
<th>Start Y: 0</th>
<th>End Y: 299</th>
</tr>
</thead>
</table>

Generate Reports
Generate XML file

Weight Distribution

- Count
- 361
- 695
- 1390
- 2780
- 5560
Modeling and Simulation in support of Biocomplexity Research

Modeling

Observation

Lab & Field Experiments

Simulation

Computer Experiments

Theory
Summary

• Challenges for biocomplexity research
• New computer science tools
• Middle computational approach
• Agent-Based Modeling approach
• Stochastic (Monte Carlo based simulation)
• NOM Molecules & Microbes as Agents
• Web-based Simulation, databases, data warehouse, visualization, database queries, data mining
• Invitation to collaborate ...
ACKNOWLEDGEMENTS

- Center for Environmental Science and Technology at the University of Notre Dame
- National Science Foundation (Information Technology Research - DEB, Hydrologic Sciences, EMSI); Environmental Protection Agency STAR; Department of Energy
- Notre Dame students & post-docs: L. Arthurs, Y-P Huang, X. Xiang, and many more
- Steve Cabaniss, University of New Mexico