Verification and Validation of Scientific and Economic Simulations

Ryan Kennedy, Xiaorong Xiang, Gregory Madey
Computer Science and Engineering
University of Notre Dame

Thomas Cosimano
Department of Finance
University of Notre Dame

11/16/2005
Overview

- Introduction
 - Concepts of Verification and Validation
 - Research Objectives and Methods
- Case Studies
 - An Agent-based Scientific Model
 - An Equation-based Economic Model
- Conclusion
- Future Work
Model Verification & Validation (V & V)

- V & V
 - Verification:
 - *get model right*
 - Validation:
 - *get right model*

- The cost and value influence confidence of model

- Want to utilize V & V for optimal cost-effectiveness

Adapted from Sargent: “Verification and Validation of Simulation Models”
Verification and Validation Process

*Adapted from Sargent: "Verification and Validation of Simulation Models" and Huang: "Agent-Based Scientific Simulation"
Applicable Verification and Validation Methods

*Balci: “Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice” lists more than 75 Methods
V & V: Subjective Analysis

- Examples of V & V Techniques
 - Face Validity
 - Animation
 - Graphical Representation
 - Turing Test
 - Internal Validity
 - Tracing
 - Black-Box Testing
V & V: Quantitative Analysis

- Examples of V & V Techniques
 - Model-to-Model Comparison (Docking)
 - Historical Data Validation
 - Sensitivity Analysis/Parameter Variability
 - Prediction Validation
What and How

- Research objective
 - Perform V & V on distinct models and identify the more cost-effective techniques

- How
 - Two very different projects as case studies
 - Evaluate and adapt the formalized V & V techniques in industrial and system engineering
Case Study 1: An Agent-based Scientific Model

- NSF funded interdisciplinary project
 - Understanding the evolution and heterogeneous structure of Natural Organic Matter (NOM)
 - E-science example
 - Chemists, biologists, ecologists, and computer scientists
- Agent-based stochastic model
- Web-based simulation model
Case Study 1: NOM

- What is NOM?
 - Heterogeneous mixture of molecules in terrestrial and aquatic ecosystems

- Why study NOM?
 - Plays a crucial role in the evolution of soils, the transport of pollutants, and the global carbon cycle
 - Understanding NOM helps us better understand natural ecosystems
Case Study 1: The Conceptual Model I

- **Agents**
 - A large number of molecules
 - Heterogeneous properties
 - Elemental composition
 - Molecular weight
 - Characteristic functional groups

- **Behaviors**
 - Transport through soil pores (spatial mobility)
 - Chemical reactions: first order and second order
 - Sorption
Case Study 1:
The Conceptual Model II

- **Stochastic Model**
 - Individual behaviors and interactions are stochastically determined by:
 - Internal attributes
 - Molecular structure
 - State (adsorbed, desorbed, reacted, etc.)
 - External conditions
 - Environment (pH, light intensity, etc.)
 - Proximity to other molecules
 - Length of time step, \(\Delta t \)

- **Space**
 - 2D Grid Structure

- **Emergent properties**
 - Distribution of molecular properties over time
Case Study 1: Implementations

Conceptual Model (Agent-based Stochastic model)

- AlphaStep
 - Features: Batch, Closed System, Standalone

- FlowSorption
 - Features: In Porous Media

- No-FlowSorption
 - Features: Surface Water

- FlowReaction
 - Features: Web-based, Standalone

- No-FlowReaction
Case Study 1: Face Validity
Case Study 1: Internal Validity I

![Graph showing the number of molecules at the end step vs. seed numbers. The graph compares 'After' and 'Before' scenarios, with peaks and troughs indicating variability in molecule counts.]
Case Study 1: Internal Validity II

<table>
<thead>
<tr>
<th>Number of Molecules</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>125.0</td>
<td>60</td>
</tr>
<tr>
<td>1275.0</td>
<td>50</td>
</tr>
<tr>
<td>1325.0</td>
<td>40</td>
</tr>
<tr>
<td>1375.0</td>
<td>30</td>
</tr>
<tr>
<td>1425.0</td>
<td>20</td>
</tr>
<tr>
<td>1475.0</td>
<td>10</td>
</tr>
<tr>
<td>1525.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Std. Dev = 100.79
Mean = 1473.9
N = 450.00
Case Study 1: Model-to-Model Comparison I

- Compare the model with validated one
- Compare the model with non-validated one
- Different implementations
 - Different programming languages
 - Different packages
- Different modeling approaches
 - Agent-based approach vs. Equation-based approach
- Powerful method for ABS
Case Study 1: Model-to-Model Comparison II

<table>
<thead>
<tr>
<th>Features</th>
<th>Alpha Step</th>
<th>No-flow Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing Group</td>
<td>University of New Mexico, Department of Chemistry</td>
<td>University of Notre Dame, Computer Science and Engineering</td>
</tr>
<tr>
<td>Programming language</td>
<td>Pascal</td>
<td>Java (Sun JDK 1.4.2)</td>
</tr>
<tr>
<td>Platforms</td>
<td>Delphi 6, Windows</td>
<td>Red hat Linux cluster</td>
</tr>
<tr>
<td>Running mode</td>
<td>Standalone</td>
<td>Web based, standalone</td>
</tr>
<tr>
<td>Simulation package</td>
<td>None</td>
<td>Swarm, Repast libraries</td>
</tr>
<tr>
<td>Animation</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Spatial representation</td>
<td>None</td>
<td>2D grid</td>
</tr>
<tr>
<td>Second order reaction</td>
<td>Random pick one from list</td>
<td>Choose the nearest neighbor</td>
</tr>
<tr>
<td>First order with split</td>
<td>Add to list</td>
<td>Find empty cell nearby</td>
</tr>
</tbody>
</table>
Case Study 1: Model-to-Model Comparison III

Total Number of Molecules in the System

Z Average
The Average Charge on Each Molecule at pH=7
Case Study 1: Model-to-Model Comparison IV
Case Study 1: Model-to-Model Comparison V

- Total Mass of Carbon
- The Weight Percentage of Carbon
Case Study 2: An Economic Model

- Interdisciplinary project
 - Initially written in Matlab within Department of Finance
 - Converted to C++ by Computer Scientists
 - Equation-based system
 - Concerned with identifying ideal economic variables, such as debt, money growth, and tax rate
Case Study 2: The Conceptual Model

- Equation-based system
- Nonlinear projection methods used to solve Ramsey problems in a stochastic money economy
- Goal is to generate the best social welfare for a given economy
- Motivation

\[
\hat{\mu}_{t+1}(\theta_t, g_t, b) = \sum_{i=1}^{n_g} \sum_{j=1}^{n_g} b_{ij} \psi_{ij}(\theta_t, g_t),
\]

\[
\hat{\tau}_t(\theta_t, g_t, d) = \sum_{i=1}^{n_g} \sum_{j=1}^{n_g} d_{ij} \Omega_{ij}(\theta_t, g_t),
\]

\[
\hat{H}_t(\theta_t, g_t, q) = \sum_{i=1}^{n_g} \sum_{j=1}^{n_g} q_{ij} \Phi_{ij}(\theta_t, g_t),
\]

\[
\hat{\lambda}_{gt}(\theta_t, g_t, v) = \sum_{i=1}^{n_g} \sum_{j=1}^{n_g} v_{ij} \Gamma_{ij}(\theta_t, g_t).
\]
Case Study 2: Face Verification

<table>
<thead>
<tr>
<th></th>
<th>LaGrange Multiplier</th>
<th>Labor</th>
<th>Money Growth</th>
<th>Tax Rate</th>
<th>Cash Good</th>
<th>Credit Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab</td>
<td>0.138</td>
<td>0.309</td>
<td>-0.009</td>
<td>0.188</td>
<td>0.486</td>
<td>0.621</td>
</tr>
<tr>
<td>C++</td>
<td>0.138</td>
<td>0.309</td>
<td>-0.009</td>
<td>0.188</td>
<td>0.486</td>
<td>0.621</td>
</tr>
<tr>
<td>Steady State</td>
<td>0.138</td>
<td>0.309</td>
<td>-0.009</td>
<td>0.188</td>
<td>0.485</td>
<td>0.620</td>
</tr>
</tbody>
</table>
Case Study 2: Tracing

- **Matlab:**
 - it 44, af 3.7496e-08, rc 0, timer 11.1, l 0.1382704496, m -0.0092286139, t 0.1881024991, h 0.3093668925
 - cc1 0.4861695543, cc2 0.6212795130, rl 1.0092221442
 - it 45, af 2.64653e-08, rc 0, timer 11.0, l 0.1382704643, m -0.0092286175, t 0.1881024947, h 0.3093668931
 - cc1 0.4861695553, cc2 0.6212795120, rl 1.0092221442

- **C++:**
 - it: 44 af: 0.00144839 rc: 0 l: 0.138359 m: -0.00936025 t: 0.188252 h: 0.309338
 - cc1: 0.486205 cc2: 0.621244 rl: -0.65888
 - it: 45 af: 0.00144784 rc: 0 l: 0.138401 m: -0.00937062 t: 0.188239 h: 0.30934
 - cc1: 0.486208 cc2: 0.621241 rl: -0.665511
Case Study 2: Implementation Characteristics

<table>
<thead>
<tr>
<th>Features</th>
<th>Matlab</th>
<th>C++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing Group</td>
<td>University of Notre Dame, Department of Finance</td>
<td>University of Notre Dame, Computer Science and Engineering</td>
</tr>
<tr>
<td>Language</td>
<td>High-Level</td>
<td>Lower-Level</td>
</tr>
<tr>
<td>Compiler</td>
<td>Interpreted</td>
<td>GNU Compiler</td>
</tr>
<tr>
<td>Good For</td>
<td>Prototyping</td>
<td>Speed</td>
</tr>
<tr>
<td>Platforms</td>
<td>Linux, Windows</td>
<td>Linux</td>
</tr>
<tr>
<td>Running mode</td>
<td>Standalone</td>
<td>Standalone</td>
</tr>
<tr>
<td>Packages</td>
<td>LAPACK, etc...</td>
<td>STL</td>
</tr>
<tr>
<td>Variables</td>
<td>Implicit</td>
<td>Declared</td>
</tr>
</tbody>
</table>
Case Study 2: Performance

<table>
<thead>
<tr>
<th></th>
<th>5 Iterations</th>
<th>50 Iterations</th>
<th>500 Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab</td>
<td>58 s</td>
<td>568 s</td>
<td>8872 s</td>
</tr>
<tr>
<td>C++</td>
<td>2 s</td>
<td>17 s</td>
<td>176 s</td>
</tr>
</tbody>
</table>
Summary & Conclusion

- Applied V & V to distinct case studies to increase model confidence
- Some techniques are more cost-effective

<table>
<thead>
<tr>
<th>For our models:</th>
<th>Agent-based</th>
<th>Equation-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Validation/Verification</td>
<td>Very Good</td>
<td>Very Good</td>
</tr>
<tr>
<td>Turing Test</td>
<td>Very Good</td>
<td>Good</td>
</tr>
<tr>
<td>Internal Validity</td>
<td>Very Good</td>
<td>n/a</td>
</tr>
<tr>
<td>Tracing</td>
<td>Fair</td>
<td>Excellent</td>
</tr>
<tr>
<td>Black-Box Testing</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Model-to-Model Comparison</td>
<td>Very Good</td>
<td>Very Good</td>
</tr>
<tr>
<td>Historical Data Verification</td>
<td>Very Good</td>
<td>Very Good</td>
</tr>
<tr>
<td>Sensitivity Analysis</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Prediction Validation</td>
<td>Good</td>
<td>Fair</td>
</tr>
</tbody>
</table>
Future Work

- Collect and evaluate more statistical data
- Compare simulation results against empirical data
- More stringent and formalized V & V
- Perform more statistical tests
Questions or Comments?