Succinct Specifications of Portable Document Access Policies

Marina Bykova, Mikhail Atallah
CERIAS and Department of Computer Sciences
Purdue University

ACM Symposium on Access Control Models and Technologies
(SACMAT'04)
June 2004
Outline

- Problem description
- Probabilistic model
- Deterministic model
- Implementation notes
- Conclusions
• The model
 – We are given a very large data repository
 – Access is payment-based
 – Each customer can request a subscription to any subset of items

• Becomes important as the number and the level of maturity of on-line document collections grow

• Might not be challenging to solve without additional constraints
• Constraints
 – For customer privacy subscriptions are not stored at the server
 – Limited-capacity storage devices are used for policy configurations
 • important in the case of smart cards
 • results in inability to precisely represent all subsets
 • introduces “false positives”
 • The goal: minimal cost
 – The cost associated with “false positives” should be as small as possible
Problem Description (cont.)

- Two models
 1. Deterministic model
 - all customers and their orders are known in advance
 2. Probabilistic model
 - no order information is known before policy assignment
 - each document has a probability of being chosen by a single subscriber

- Two optimization types
 1. Minimizing total cost of false positives over all customers
 2. Minimizing maximum cost of false positives for a single subscription
Notation

- Repository contains n elements $1, \ldots, n$.

- Access to document i can be purchased at the price c_i.

- Binary strings m bits long ($m < n$) are used to represent access rights.

- Every subscription bitstring is constructed using bitwise OR of the bitstrings of the documents composing the order.

- The “\geq” operation on access rights is defined as a bitwise \geq comparison of two bitstrings.
• Each document i has access probability $0 < p_i \leq 1$

• All probabilities p_1, \ldots, p_n are independent

• The “cost” of a policy assignment is now a sum of probabilities of all subsets of the documents, with each subset weighted by the costs of the false positives in it
Minimizing the total cost of false positives

- Trying all bitstrings for each document, for all possible document subsets, is impractical
- Empirical observation: setting only one bit to 1 in an access bitstring corresponding to a document approximates the optimum solution rather well
- Still does not allow for an efficient solution
 - the problem is NP-hard
 - reduction from partitioning of \(n \) items into \(m \) buckets such that the sum of the squares of bucket weights is below a threshold
Minimizing the Total Cost in Probabilistic Model

- One bit per document
 - The goal can be achieved by partitioning n documents into m groups
 - “Cost” C_i of a group i is:

 $$ C_i = \sum_{j=1}^{s_i} c_{ij} (1 - p_{ij}) - (\sum_{j=1}^{s_i} c_{ij})(\prod_{j=1}^{s_i} (1 - p_{ij})) $$

 - The total cost is the sum of groups’ costs
 - Given a policy assignment, the cost is computed in linear time
 - We give an efficient algorithm for cases when all c_i’s are equal (e.g., $c_i = 1$)
Minimizing the Total Cost in Probabilistic Model (cont.)

- One bit per document — Solution
 - s_i denotes the size of group i
 - “Cost” of group i is
 \[
 C_i = \sum_{j=1}^{s_i} (1 - p_{ij}) - s_i \prod_{j=1}^{s_i} (1 - p_{ij})
 \]
 - Contiguous grouping of n sorted items into m groups gives optimal results
 - Dynamic programming algorithm gives a solution in $O(mn^2)$ time
One bit per document, one document at a time

- Each customer includes only one document in an order
- The sum of document probabilities p_i's is now ≤ 1
- The group cost becomes $C_i = \sum_{j=1}^{s_i} p_{ij} \sum_{k=1, k\neq j}^{s_i} c_{ik}$
- Similarly, when all c_i's are equal, a dynamic programming algorithm solves the problem in $O(mn^2)$ time

- group cost is $C_i = (s_i - 1) \sum_{j=1}^{s_i} p_{ij}$
- “monotonicity”: a group composed of documents with larger probabilities has smaller size
- dynamic programming approach tests all choices for partitioning in $O(mn^2)$ time
Minimizing the Maximum Cost in Probabilistic Model

- Individual subscription order is considered, any set of documents is possible
- When all document costs c_i are equal, simply partition n documents into m groups of n/m documents each
- When $c_i \neq c_j$, we need to minimize
 \[C = \sum_{i=1}^{n} c_i - \sum_{j=1}^{m} \min_{i=1}^{n} \{c_i | i \in S_j\} \]
 where S_i is the document set of group i
- Optimal partitioning can be done in $O(n)$ time
- Total algorithm runs in $O(n \log n)$ time
There are k subscribers 1, ..., k

Subscriber i requests s_i documents i_1, \ldots, i_{s_i}

Optimal solution to the \textit{total} cost of false positives problem requires

$$C = \min \left\{ \sum_{i=1}^{k} C_i \right\} = \min \left\{ \sum_{i=1}^{k} \left(f^{-1}(\frac{s_i}{\sum_{j=1}^{s_i} r_{ij}}) - \sum_{j=1}^{s_i} c_{ij} \right) \right\}$$

Optimal solution to the \textit{maximum} cost of false positives problem is computed as

$$C = \min \left\{ \max_{i=1 \text{ to } k} C_i \right\} = \min \left\{ \max_{i=1 \text{ to } k} \left(f^{-1}(\frac{s_i}{\sum_{j=1}^{s_i} r_{ij}}) - \sum_{j=1}^{s_i} c_{ij} \right) \right\}$$

where $f^{-1}(r)$ computes the cost of policy r
• Any general solution to cost minimization is intractable
 – the problem is NP-hard
 – reduction from the graph bisection problem

• Practical heuristic: use probabilistic approach to solve deterministic (compute probabilities, etc.)
Implementation Issues

- Static policy assignment makes sharing of information about false positives possible
 - the framework is best suited for periodic subscriptions with policy refreshment
 - performance can “drift” from optimality between policy re-generations
 - a “t strikes and you are out” strategy can be employed

- Document probabilities can be refined over time

- Randomization can be introduced into the policy assignment process
Conclusions and Future Work

- This work explores the problem of policy assignment optimization under space constraints.

- Efficient algorithms are developed for some settings, while others are shown to be intractable.

- Future directions include:
 - considering dependency between documents
 - allowing for different types of documents
 - exploring the problem for structured sets of documents

- These slides are available at http://www.cs.purdue.edu/homes/mbykova/papers/sacmat04-slides.{ps,pdf}