Anomaly Detection in the WIPER System using A Markov Modulated Poisson Distribution

Ping Yan
Tim Schoenharl
Alec Pawling
Greg Madey
Outline

- Background
- WIPER
- MMPP framework
- Application
- Experimental Results
- Conclusions and Future work
Background

- **Time Series**
 - A sequence of observations measured on a continuous time period at time intervals
 - Example: economy (Stock, financial), weather, medical etc...

- **Characteristics**
 - Data are not independent
 - Displays underlying trends
WIPER System

- Wireless Phone-based Emergency Response System

- Functions
 - Detect possible emergencies
 - Improve situational awareness

- Cell phone call activities reflect human behavior
Data Characteristics

- Two cities:
 - Small city A:
 - Population – 20,000 Towers – 4
 - Large city B:
 - Population – 200,000 Towers – 31

- Time Period
 - Jan. 15 – Feb. 12, 2006
Tower Activity

Small City (4 Towers)
Tower Activity

Large City (31 Towers)
15-Day Time Period Data

Every Hour Call Activities

Small City

Sun1
Mon1
Tue1
Wed1
Thu1
Fri1
Sat1
Sun2
Mon2
Tue2
Wed2
Thu2
Fri2
Sat2
Sun3
15-Day Time Period Data

Large City
Observations

- Overall call activity of a city are more uniform than a single tower
- Call activity for each day displays similar trend
- Call activity for each day of the week shares similar behavior
MMPP Modeling

\[N(t) = N_0(t) + N_A(t) \]

- \(N(t) \) : Observed Data
- \(N_0(t) \) : Unobserved Data with normal behavior
- \(N_A(t) \) : Unobserved Data with abnormal behavior

Both \(N_0(t) \) and \(N_A(t) \) can be modulated as a Poisson Process.
Modeling Normal Data

- Poisson distribution

\[P(N; \lambda) = \frac{e^{-\lambda} \lambda^N}{N!} \quad N = 0, 1, \ldots \]

- Rate Parameter: a function of time

\[\lambda \sim \lambda(t) \]
Adding Day/hour effects

\[
\lambda(t) = \lambda_0 \, \delta_{d(t)} \, \eta_{d(t), h(t)}
\]

\[d(t) \in [1, 2, \ldots, 7]\]

Associated with Monday, Tuesday ... Sunday

\[h(t)\] : Time interval, such as minute, half hour, hour etc

\[\lambda_0\] : Average rate of the Poisson process over one week
Requirements:

\[
\sum_{i=1}^{7} \delta_i = 7 \quad \sum_{j=1}^{D} \eta_{i,j} = D, \quad \forall i
\]

\(\delta_i\) : Day effect, indicates the changes over the day of the week

\(\eta_{i,j}\) : Time of day effect, indicates the changes over the time period \(j\) on a given day of \(i\)
Day Effect

Call Activities

Time Interval (7 Days x 24 Hours)

- Blue line: Call activities
- Red line: Day effect
- Green dashed line: Overall Average
Time of Day Effect

Call activities

Time of Day Effect

Overall Average

Day Effect

Call Activities

Time Interval (Half hour)
Prior Distributions for Parameters

\[
\lambda_0 \sim \Gamma(\lambda; a^L, b^L) \quad \Gamma(.) \text{ is the Gamma distribution}
\]

\[
\frac{1}{7} [\delta_1, \delta_2, ..., \delta_7] \sim \text{Dir}(\alpha^d_1, \alpha^d_2, ..., \alpha^d_7)
\]

\[
\frac{1}{D} [\eta_{i,1}, \eta_{i,2}, ..., \eta_{i,D}] \sim \text{Dir}(\alpha^h_1, \alpha^h_2, ..., \alpha^d_D)
\]

\text{Dir}(.) \text{ is a Dirichlet distribution}
Modeling Anomalous Data

- $N_A(t)$ is also a Poisson process with rate $\lambda_A(t)$

- Markov process $A(t)$ is used to determine the existence of anomalous events at time t

\[
 A(t) = \begin{cases}
 1 & \text{an event is occurring at time } t \\
 0 & \text{otherwise}
 \end{cases}
\]
Continued

- **Transition probabilities matrix**

\[
M_A = \begin{pmatrix}
1 - A_0 & A_1 \\
A_0 & 1 - A_1 \\
\end{pmatrix}
\]

\[A_0 \sim \beta(A, a_0^A, b_0^A)\]
\[A_1 \sim \beta(A, a_1^A, b_1^A)\]

\[N_A(t) \sim \begin{cases}
0 & \text{A}(t) = 0 \\
\mathcal{P}(N; \lambda_A(t)) & \text{A}(t) = 1
\end{cases}\]
MMPP \sim HMM

- **Typical HMM**
 (Hidden Markov Model)

- **MMPP**
 (Markov Modulated Poisson Process)
Apply MCMC

- **Forward Recursion**
 - Calculate conditional distribution of $P(A(t) \mid N(t))$

- **Backward Recursion**
 - Draw sample of $N_A(t)$ and $N_0(t)$

- Draw Transition Matrix from Complete Data
Anomaly Detection

- Posterior probability of $A(t)$ at each time t is an indicator of anomalies

- Apply MCMC algorithm:
 - 50 iterations
Results

Posterior Distribution Averages

- **Observed**
- **Modeled**

Axes:
- **Y-axis:** Call activities
- **X-axis:** Time (Mon, Tue, Wed, Thu, Fri, Sat, Sun)

Graph:
- The graph shows the comparison between observed and modeled call activities over a week, with a clear peak on Sunday and a dip on Monday.

Legend:
- Blue line represents the observed data.
- Red line represents the modeled data.
Conclusions

- Cell phone data reflects human activities on hourly, daily scale

- MMPP provides a method of modeling call activity, and detecting anomalous events
Future Work

- Apply on longer time period, and investigate monthly and seasonal behavior
- Implement MMPP model as part of real time system on streaming data
- Incorporate into WIPER system