Evaluation of Measurement Techniques for the Validation of Agent-Based Simulations Against Streaming Data

Timothy Schoenharl and Gregory R. Madey*
http://www.nd.edu/~dddas/

Departments of Computer Science & Engineering
University of Notre Dame
Notre Dame, IN USA
* Presenter

This research is supported in part by the National Science Foundation, the DDDAS Program, under Grant No. CNS-050312

ICCS 2008, Krakow, Poland, June 24, 2008
Problem Domain

- Disasters, crises, emergencies, civil disorders, humanitarian relief efforts, transportation disruptions, ... events involving large numbers of people.
 - Natural origins: hurricanes, tornados, earthquakes, tsunami, snow storms, floods, volcanoes, epidemics, ...
 - Human origins: terrorists attacks, political unrest, civil unrest / disorder, industrial accidents, transportation accidents, ...
Emergency Response Management

- **Problems**
 - Communication
 - Co-ordination
 - Situation Awareness (SA)
 - Sharing SA

- **Information Needs**
 - Alerts - Has something happened?
 - Location - Where, extent?
 - Numbers - How many people?
 - Movement - Stationary, moving?
 - What is nature of the event?
 - How should we respond?

- Enhanced Situational Awareness: Calling activity and cell phone locations can help with these information needs
Cell Phones: An In-Place Mobile Sensor Network

- Increasing ubiquity in urban areas
- Approaching +100% in some regions
- Often more popular than wired systems, especially in developing economies
- Cell tower and handset continually exchange “signal strength” info
- Location data
 - Closest cell-tower cells, distance estimates possible
 - Ability to triangulate
 - Growing availability of GPS data
- Collective knowledge of the location, numbers, calling activity and movement of a large sample of population in a region is potentially available
Animation
Animation
WIPER

- Wireless Integrated Phone-Based Emergency Response System
- Ties into the existing cellular phone infrastructure to detect, monitor, predict anomalies
 - Fact: people make cell phone calls during a disaster
 - Family, friends, E911
 - New calling patterns
 - Increased numbers of calls placed
- Streaming data
 - Calls placed per cell tower
 - Calling patterns & volume
WIPER/DDDAS
Distributed System Structure

- Real Time Data Source
 - Historic data from cellular service provider
 - Eventually will use live data streams
- DAS - Detection and Alert System
- SPS - Simulation and Prediction System
- DSS - Decision Support System
WIPER - Data Source

- Data collection occurs at the cellular service provider
- WIPER receives anonymized, pre-processed, encrypted data
- No personally identifiable information leaves the service provider’s network
WIPER - Detection and Alert

Location and Activity View

Real World

Social Network View
Simulation Prediction System

- For all alerts, WIPER generates an ensemble of Agent-Based Simulations
- Simulations used to determine nature of anomaly, predict evolution of event
- Simulations use direct stream of information to monitor real world and dynamically validate/update simulations
Simulation Prediction System

- Agent-Based/GIS-Based Simulations used to test hypotheses about real-world phenomena
- Geo-spatial constraints embodied in the simulations
 - Rivers, roads, coast-lines
 - Accurate cell-tower coordinates
 - Overlaid on maps to support emergency response managers
Modeling & Simulation

- “All models are wrong, some models are useful” … Box

- Verification, calibration and validation
 - Verification: is the model right (debugging)?
 - Calibration: does the model fit the data (parameterization)?
 - Validation: is it the right model (solving the wrong problem)?
DDDAS Adaptation Techniques

- Update the Model
- Replace the Model

Diagram:
- Verification
- Calibration
- Validation
- DDDAS
Online Validation: Approach

How do we validate simulations against streaming data?
- Treat validation as model selection process. Create ensemble of models, rank simulations based on distance measure.

How do we rank models?
- Simulations generate output as a vector of towers, with agents in tower as the value at each position
- Rank simulation output by measuring distance from simulation output vector to target
Animation

Real Time Streaming Data

Sim 1 => Sim 2

Sim 3 => Sim 4
Figure: Cell Phone activity aggregated at tower level and overlaid on a satellite image. Satellite imagery courtesy Google Earth.

Figure: Call activity in 3D. Calling activity represented by cell height.
Online Validation

Validation on Movement Models

- Treat the output from simulation, list of towers with numbers of active agents, as a vector
- Use distance measure to choose closest match
- Validation work demonstrates this approach, evaluates measures for their applicability
- This approach is related to Input-Output Validation [Balci 98]

Figure: Validation on agent movement models. Target Flee, metric L_∞
Distance Measures

We consider the following distance measures for their applicability to online model validation. For each measure, \(\bar{p} = (p_1, p_2, \cdots p_n), \bar{q} = (q_1, q_2, \cdots q_n) \):

- **Euclidean**
 \[
 d(\bar{p}, \bar{q}) = \sqrt{\sum_{i=1}^{n}(p_i - q_i)^2}
 \]

- **Manhattan**
 \[
 d(\bar{p}, \bar{q}) = \sum_{i=1}^{n}|p_i - q_i|
 \]

- **Chebyshev**
 \[
 d(\bar{p}, \bar{q}) = \max_{i}(|p_i - q_i|) = \lim_{k \to \infty} \left(\sum_{i=1}^{n}|p_i - q_i|^k \right)^{1/k}
 \]

- **Binary**
 \[
 d(\bar{p}, \bar{q}) = \frac{\sum_{i=1}^{n}p_i \oplus q_i}{\sum_{i=1}^{n}p_i \lor q_i} \quad \text{where} \quad p_i = \begin{cases} 0 & \text{if } p_i = 0 \\ 1 & \text{otherwise} \end{cases}
 \]

- **Canberra**
 \[
 d(\bar{p}, \bar{q}) = \sum_{i=1}^{n} \frac{|p_i - q_i|}{|p_i + q_i|}
 \]
Experiments

- Nine hundred agents (cell phones)
- Twenty Voronoi cells (cell towers)
- Five movement models (human behavior)
- Five distance metrics

Experiment 1
- One target data stream for each movement model
- One hundred random simulations for each model

Experiment 2
- Five hundred replications (random seeds)
- 500x500 matrix of distances
Validating ABM

Figure: Plot of the distances of multiple simulation runs of various models on a Flee target using the Euclidean Distance metric, 10 minute intervals.
Validating ABM

Comparison of Models on First Iteration of Simulation Output, Euclidean Metric

Figure: Plot of distance values between simulation instances.
Use distance measures for ranking simulations
Evaluate the effectiveness: CMC curve
CMC Curves

- Used in vision and biometrics research
- Cumulative Match Characteristic curves
 - Y-axis is the true positive rate
 - X-axis is the cumulative rate

(Bowyer, 2004)
Figure: CMC Curve displaying Rank 1-25 matches for all of the 5 distance metrics.
Table: Summary of average distances to first true and false matches, showing value of measures for classification. All of the measures from the L family display good characteristics.
Online Validation Contributions

- Method: Online Validation as Model Selection
- Demonstrate 100% Accuracy on Matching Model Type
- Several measures in L family work well
Discussion

- Multiple online model validation metrics evaluated
 - Euclidean, Manhattan & Chebyshev metrics all work well
 - But … additional testing needed on more realistic scenarios

- WIPER System provides complimentary tools for monitoring and predicting crisis events - improved Situation Awareness

- Connection to cellular service provider allows multi-modal monitoring of real time events without need for new sensor infrastructure

- Architecture protects privacy while providing access to information, but potential for privacy concerns

- Limitations of cell phones during prolonged power outage
Summary

- WIPER is a demonstration project using existing cell phone system in a mobile sensor network
- Employs DDDAS principles
 - Simulation prediction system
 - Large amounts of streaming data
 - Simulation system adapts to new data by using online validation to select best fit model
- Euclidean, Manhattan & Chebyshev metrics all work well
- But … additional testing needed on more realistic scenarios
Acknowledgements

- Tim Schoenharl
- Alec Pawling
- Ping Yan
- Laszlo Barabasi
- David Hachen
Thank You

Questions?

http://www.nd.edu/~dddas/