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Abstract

As the size of available datasets has grown from
Megabytes to Gigabytes and now into Terabytes, machine
learning algorithms and computing infrastructures have
continuously evolved in an effort to keep pace. But at large
scales, mining for useful patterns still presents challenges
in terms of data management as well as computation. These
issues can be addressed by dividing both data and compu-
tation to build ensembles of classifiers in a distributed fash-
ion, but trade-offs in cost, performance, and accuracy must
be considered when designing or selecting an appropriate
architecture. In this paper, we present an abstraction for
scalable data mining that allows us to explore these trade-
offs. Data and computation are distributed to a computing
cloud with minimal effort from the user, and multiple mod-
els for data management are available depending on the
workload and system configuration. We demonstrate the
performance and scalability characteristics of our ensem-
bles using a wide variety of datasets and algorithms on a
Condor-based pool with Chirp to handle the storage.

1 Introduction

The last decade witnessed a surge in the availability of
massive datasets. Data collected from various scientific do-
mains and real-world applications is quickly overwhelming
computing systems and data mining algorithms, presenting
a challenge for theoreticians and practitioners alike. Par-
allel and distributed data mining [19] have afforded us with
scalable implementations of various learning algorithms, al-
lowing a capability to scale to massive datasets while also
enabling a significant improvement in accuracy.

Distributed data mining is a particularly attractive solu-
tion as one can partition a dataset into subsets, distribute
them across multiple processors, and learn independent
classifiers before coalescing them as an ensemble. An ad-

*Denotes equal contribution.

vantage of distributed data mining approaches is that the
partition size of the learning task can be broken down to
fit the available (commodity) computational resources. One
can easily imagine a divide-and-conquer approach in which
a dataset is distributed to a group of processors. Each of
those processors learns a classifier concurrently, and reports
its classifier to a central processor. The central processor
can then process the predictions of the independent classi-
fiers learned. Distributed data mining leads to a creation
of an ensemble or committee of “diverse” classifiers. Each
classifier is given a smaller sub-task of the learning task to
learn, and hence the complexity of the learning task at hand
is reduced. It also introduces diversity among the classifiers,
leading to an improvement in accuracy. Moreover, learning
on the entire very large training set, without partitioning,
can force the inductive learner to over-fit the problem as it
will try to model the entire training set; the learned classifier
will then tend to lose its generality.

Of course, the open question is what sized subsets or
data partitions to create. There really is “no known method
of sample selection and estimation which ensures with cer-
tainty that the sample estimates will be equal to the un-
known population characteristics” (p. 26) [12]. To do any
intelligent subsampling, one might need to sort through the
entire dataset, which could take away some of the efficiency
advantages of distributing the workload in the first place.

Contributions While it has been shown that ensemble
classifiers generally improve accuracy over the single clas-
sifier and offer computational advantages, various questions
remain: 1) how to appropriately partition the data into sub-
sets for learning? 2) what are the limits of scalability?
3) how to best exploit the available resources? Thus, the key
contributions of the paper are as follows: 1) a scalable and
efficient abstraction for distributing data to different sites;
2) a thorough comparison of multiple ways of partitioning
and distributing data; 3) a scale of datasets to evaluate the
performance three different learning algorithms — decision
trees, k-nearest neighbors, and support vector machines —
under the distributed setting.



2 Related Work

The problem we address lies at the intersection of data
mining and high-performance computing. Accordingly, we
provide a survey of relevant work from both areas.

Dataset sizes that exceed the memory capacity of a desk-
top computer pose a major challenge for data mining. This
limitation can be mitigated through optimized algorithm de-
sign [21] and the use of sampling [6] or ensemble meth-
ods [4]. With improvements in multi-processor machines,
and more recently multicore technology, greater scalability
can be achieved by effectively parallelizing algorithm im-
plementations [8, 17, 24, 31]. But these approaches remain
limited because (i) performance gains often cannot be real-
ized beyond 8-16 cores due to communication overhead and
(ii) dataset sizes are restricted to the total memory available
in the system, generally on the order of a few Gigabytes.

To overcome these hurdles and achieve not incremen-
tal improvements, but drastically increased scalability, the
workload can be divided across a much larger distributed
system, or computation grid [3, 11, 14, 20, 23, 27]. This ap-
proach has proven successful for certain tasks [2, 9], but
such systems often require an application-specific design
and implementation. In contrast, general-purpose systems
may require less effort from the programmer and/or user
but still cannot scale beyond several Gigabytes of data [10].

Our work bridges this gap by providing a generic ab-
straction for large-scale data mining, enabling the user to
run his own algorithms with minimal programming effort.
The abstraction is capable of managing both data and com-
putation on various types of distributed systems ranging
from small clusters to large dynamic computing clouds.

3 Abstraction for Distributed Data Mining

Modern computing systems provide the user with a large
amount of parallelism. Despite many years of research into
multi-threaded, message passing, and parallel programming
languages, harnessing this parallelism remains very difficult
for the non-expert user. Parallel machines commonly used
today include:

Multicore computers: machines with multiple CPUs on
a single chip that share a common RAM and run a single op-
erating system image. At the time of writing, most desktop
machines are two- or four-way multicore CPUs, and it is
expected that future machines will have many more cores.

Cluster computers: collections of tens to thousands of
individual machines, each with their own (perhaps multi-
core) CPU, RAM, and disk, all connected by a fast switch
to some type of centralized filesystem. A cluster is typically
homogeneous, reliable, and dedicated to a single user at a
time. A user that requests 16 CPUs will have sole access to
exactly those 16 CPUs for the length of the request.

Cloud computers: collections of hundreds to tens of
thousands of machines, different from clusters in two key
respects. First, few centralized filesystems scale to cloud
size, so a cloud makes use of individual disks on each node
for both temporary and permanent storage. Second, because
a cloud naturally has a high failure rate, it does not allocate
specific nodes to users, but assigns resources dynamically.

To exploit the physical parallelism in these systems, we
advocate abstractions that join together simple sequential
programs into data parallel graphs. This allows rapid re-
use of existing data mining codes without confronting the
substantial challenges of writing applications using multi-
threaded or message-passing libraries. This approach has
been used successfully in systems such as Map-Reduce [7],
Dryad [15] and All-Pairs [22]. In this work, we define the
abstraction Classify as follows:

Classify( D, T, P, N, F, C ) returns R:

D - Training set: list of (name,properties)
T - Testing set: list of (name,properties)
P - Partitioning method.

N - Number of partitions.

F - Classifier function.

C - Collection process.

R - Result set: list of (name,class)

As shown in Figure 1, the Classify abstraction feeds
dataset D into process P, which creates N partitions
DI1...DN. These are fed into N copies of F in parallel along
with testing set T, generating results R1...RN. Results are
combined by process C by majority voting into a final re-
sult R returned to the user. Classifier function F is simply an
existing sequential classifier with the following signature:

F(D, T) returns R:

D - Training set: list of (name,properties)
T - Testing set: list of (name,properties)
R - Result set: list of (name,class)

The user may choose from a variety of partitioning tech-
niques for the training set. Shuffle selects data items one
at a time and sends each to a random partition, resulting
in roughly equal-sized partitions. A shuffle partition may
also be M-overlapping, in which an item may appear in M
partitions, allowing for more accurate sampling of minority
classes but increasing data sizes and runtimes. Chop divides
the training set into equal pieces, preserving the existing
order. This is typically only appropriate when the data is
pre-randomized, or when the user wishes to reproduce runs
exactly. We will show that the choice of partition can have
a significant effect on the implementation.

Classify appears similar to the abstraction Map-
Reduce [7]. Our assignment of tasks F onto D1...DN is
completed by the Mapper function, and C, the collection
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Figure 1. Four Implementations of the Classify Abstraction
This figure shows four possible ways of implementing the Classify abstraction by varying the placement of data and functions
on the nodes of the system. Rounded boxes show the boundaries of one node in the system, which has both a CPU and local
storage. For example, in the Pull implementation, the partition function P reads the training data D and writes the partitions
DI...DN back to the same node. Each of the classifiers F run on separate nodes and pull the data over the network. But in
Push, the partition function P reads the data D from one node and writes the partitions directly to the execution nodes, where
the classifiers F read the local copy. Full details are given in Section 4.

of results of the subclassifers into a final classification, is
the job of the Reducer function. But several components
of classification are not strictly accounted for by the Map-
Reduce abstraction. The Map-Reduce model does not con-
sider logical partitioning as a first-class component of the
model, rather it delegates partitioning as an implementation
detail of physical partitioning of the underlying filesystem.

Some Map-Reduce implementations [13, 5, 26] adapt the
Map-Reduce model to recognize logical partitioning in var-
ious ways, such as allowing for custom partitioning algo-
rithms or actually including partitioning as primitive in their
adjusted models. Mapping logical partitions onto physical
partitions within the filesystem, however, remains a charac-
teristic highly dependent on the implementation rather than
strictly defined within the Map-Reduce abstraction.

The testing set also does not fit into the Map-Reduce ab-
straction well. It must either be encapsulated in the Map-
per and Reducer functions — a departure from the logical
description of the Map-Reduce abstraction — or it must be
stored on the distributed filesystem at a cost of multiple
replicas and significant metadata for each instance of this
one-time-use file.

Our intent is careful study of data placement and access.
Instead of attempting to derive Classify from the general
Map-Reduce, we chose to implement an abstraction that
considers classification elements relating to data placement
directly as first-class components of the abstraction model.

4 Implementing the Abstraction

There are many possible ways to implement Classify in
a parallel or distributed system. An implementation must
choose how many nodes to use for computation, how many
to use for data, and how to connect the two. Figure 2
shows several possibilities we have explored, differing only
in where data is placed in the system. Below we will explore
the consequences of each of these choices on performance.

Streaming. The simplest implementation of Classify
connects each process in the system at runtime via a stream
such as a TCP connection or a named pipe. Data only exists
in memory between processes and, except for some mini-
mal buffering, a writer must block until a reader clears the
buffer of data. However, this requires that all processes be
ready to run simultaneously and affords no simple recov-
ery from failure. If one process or stream fails, the entire
abstraction must start from the beginning. Thus, it is an ap-
propriate implementation for a multicore machine when the
number of partitions is less than or equal to the number of
processes. Except for very small workloads, it is not practi-
cal for a cluster or a cloud where the possibility of network
or node failure is very high. To make the abstraction robust,
we must make use of some storage between processes.

Pull. In this implementation, P reads data from the
source node and writes partitions back to the same node.
When the various Fs are assigned to CPUs, they connect to
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Figure 2. Performance of Partitioning and Collecting

2(a) shows the time to partition 5.4GB of data into 256 partitions on a single local disk or a varying number of remote
disks. Figure 2(b) shows the time to partition 5.4GB of data into a varying number of partitions, using a single local disk
and writing to 16 remote disks. 2(c) shows the time to collect classifier output (3.2MB per partition) from each of a varying
number of remote disks. By-file collection uses 91MB, while by-instance uses less than 1KB.

the source node and pull in the proper partition. This pro-
vides maximum runtime flexibility as there is no constraint
on where an F may run. Because each partition is stored
on disk, individual Fs may fail and restart without affecting
the rest of the computation. However, as we will show, this
places a significant I/O burden on the source node in both
the partitioning and classifying stages. The technique may
be appropriate for a cluster with a large central file server,
but is not likely to scale to a cloud of any significant size.

Push. In this implementation, P chooses in advance
which nodes will be responsible for working on each par-
tition. As it reads data items from the training set, they
are pushed out directly to the assigned nodes. The Fs are
then dispatched for execution. In “Pure Push”, each F must
run only on the node where data is located. This may not
be possible in a cloud, where that node may have been dy-
namically assigned to an unrelated task. Therefore we also
define “Relaxed Push”, where each F prefers to run on the
node with its partition but may also run on another node
and access that partition remotely. This technique can (sig-
nificantly) improve the performance of partitioning and the
overall I/O rate as the number of nodes increases, but also
increases the exposure of the system to failed, slow, or oth-
erwise misbehaving disks.

In large clusters or clouds, we would like to Push data
to a number of remote nodes equal to the number of parti-
tions to maximize parallelism. Figure 2(a) shows, however,
that chop partitioning to a large number of remote resources
begins to reduce performance due to moving beyond ho-
mogeneous clusters and encountering a greater variety of
hardware. Shuffle partitioning has its own drawback in a
cloud environment, because it requires remote connections
to remain open to every remote node throughout the entire
partitioning.

Hybrid. To address the limitations of Push and Pull, we
also define Hybrid. In this mode, P chooses a small set of
intermediate nodes known to be fast, reliable, and of suf-
ficient capacity to write the partitioned data. At runtime,
each F then reads its partition over the network from these
nodes. This combines advantages of Pull (flexible alloca-
tion of CPUs, reliable partitioning) with advantages of Push
(increased I/0 performance). However, it requires the im-
plementation to have some knowledge of the reliability of
the underlying system, which may not always be possible.
Figure 2(b) shows that remote partitioning even to a modest
set of reliable nodes is faster than local partitioning, without
the pitfalls of Pushing data to unreliable environments.

4.1 Implementation Structure

We implemented Classify using Condor [29] to har-
ness computing resources, and Chirp [28] to allow remote
filesystem-like access to the storage at each node.

The source node is responsible for several tasks: parti-
tioning the data, configuring local state to describe the batch
jobs, submitting the batch jobs, and collection after all jobs
have completed. The remote cloud or cluster nodes are re-
sponsible for executing the classifier instances and generat-
ing the prediction output. Partitioning is described above,
so here we describe the remaining structures:

Local State. Local state requirements include an execu-
tion directory, the training and test set definitions required
by all classifiers, and the batch job definition files. The test
set and .names dataset definition are not replicated on the
local disk, but rather shared efficiently. The job definition
files are created after the data partitioning, and the batch
jobs are submitted using these definitions.

Remote Structure. Within the batch jobs themselves,
we use a hierarchical architecture of processes. The batch



job that is run on each remote node is the wrapper, a stan-
dard piece of code that is the same for all instances of Clas-
sify. The wrapper is responsible for setting up the execution
environment on the remote compute node. The wrapper’s
principal job is to execute the function, a user-provided,
application-specific piece of translational middleware. The
function executes the underlying data mining executable
(the application) and maps application-specific output to
the structure expected by the wrapper. The function al-
lows execution of any underlying classifier without having
to change core pieces of the abstraction framework.

Collection. We consider two approaches for collection.
The first, by-file, is analogous to chop partitioning. The al-
gorithm completes one prediction file at a time, maintaining
a plurality-determining data structure for each test instance.
After all files are processed, each data structure contains the
combined final prediction. The overall accuracy, accuracy
per class, and other statistics can be computed from these
data structures. As the number of instances in the test set
increases, this version needs more memory to maintain data
structures for each instance, with memory requirements to-
taling a factor of the product of the number of test instances
and the number of classes in the dataset.

The alternative, collecting by-instance, is akin to shuffle
partitioning. All prediction files are accessed concurrently,
and only one data structure is needed as each instance is
tallied serially. Memory for this version remains constant
as the number of instances increases, since the memory re-
quirement is only a factor of the number of classes in the
dataset. On the other hand, it requires more files open at
once and accesses prediction files less efficiently.

An abstraction may decide the trade-off between file re-
sources accessed concurrently and memory used for con-
current tallying data structures. For datasets few classes,
concurrent data structures for each partition fit in memory
easily even when the test set is large. However, for very
large numbers of classes or very large numbers of instances
in the test file, it is possible for the collection to exceed
main memory capacity. Figure 2(c) shows the time required
to collect results of a distributed ensemble of classifiers us-
ing these two approaches, varying the number of partitions.
The input data is the set of prediction files from a run of the
KDDClup data, chosen because it the largest by-file memory
requirement among our datasets (approximately 91MB).

Because the largest set of prediction files for any con-
figuration we tested consisted of less than 10MB of out-
put, and thus disk space was not a concern, our imple-
mentation allows the batch system to return all prediction
files to the submitting node, instead of using a separate file
server or distributed filesystem. Because the largest collec-
tion memory requirement of any dataset we used was less
than 100MB, all of our results use by-file collection.

S Experimental Setup

To evaluate the performance and scalability characteris-
tics of the data mining abstraction described in the previ-
ous section, we conduct experiments on a diverse body of
datasets using a variety of popular learning algorithms.

Training Instances Test Instances .
Dataset (Size on Disk) (Size on Disk) | Attributes
Protein 3,257,515 (170 MB) 362,046 (20 MB) 20
KDDCup | 4,898,431 (700 MB) | 494,021 (71 MB) 41
Alpha 400,000 (1.8 GB) 100,000 (450 MB) 500
Beta 400,000 (1.8 GB) 100,000 (450 MB) 500
Syn-SM 10,000,000 (5.4 GB) | 100,000 (55 MB) 100
Syn-LG 100,000,000 (54 GB) 100,000 (55 MB) 100
Datasets. We use a combination of real and synthetic

datasets with varying dimensions covering a wide range of
sizes. The Protein dataset is real data describing the fold-
ing structure of different amino acids; the task is to predict
the structure of new sequences. The second dataset stems
from the 1999 KDD-Cup1 and contains real network data;
the task is to distinguish the “good” ones from the “bad”
(intrusion detection). The next two datasets, Syn-SM and
Syn-LG, were produced with the QUEST generator [1] us-
ing a perturbation factor of 0.05 and function 1 for class as-
signment. The last two datasets, Alpha and Beta, are taken
from the Pascal Large Scale Learning Challenge?, which
were deemed more appropriate for support vector machines.
We found that the other datasets required significant tweak-
ing of SVM parameters even on much smaller subsamples.
The focus of our paper is primarily on scalability studies
and less on parameter sweep for improvements in accuracy,
hence we only use the Alpha and Beta datasets with SVMs.

Algorithms. We include three traditional learning meth-
ods for the evaluation of our abstraction framework:

e Decision trees (popular C4.5 implementation [25])
e SVMs (efficient implementation [18])
e K-nearest neighbor classification (our implementation)

The algorithms cover a range of computational complex-
ities and rank among the most popular learning methods.
For decision trees and support vector machines, we used the
default parameters provided by the respective implementa-
tions. For k-nearest neighbor classification we used k = 5
neighbors. All of the algorithms were compiled for 32-bit
x86 systems with g++ v3.4.6 using optimization -O3.

We selected these algorithms because they naturally fit
the distribute-compute-collect paradigm. However, it is
worth noting that with only minor modifications to the ab-
straction we could accommodate other learning methods

Uhttp://www.sigkdd.org/kddcup/index.php
Zhttp://largescale.first.fraunhofer.de/



as well, for example Distributed K-Means Clustering [16]
or finding frequent itemsets using Apriori-Based meth-
ods [30], which may require multiple distributed stages.

Computing Environment The platform used as testbed
for our experiments is a Condor pool of approximately 500
machines. The pool consists primarily of workstations in
a university environment with both 32-bit and 64-bit x86
processors and memory capacities ranging from 512MB to
4GB. Although the pool as a whole is a computation cloud
with limited control for the user, a 48-node subset is in
our possession, giving us more power over the environment
(e.g. reliability of resources, priority status for execution).
The machines in this dedicated cluster are dual-core 64-bit
x86 architectures with either 2GB or 4GB of total memory
(1GB or 2GB per core, respectively). Jobs were instructed
to prefer this cluster over other nodes when available.

For multicore experiments we used 64-bit dual-core
AMD Opterons with 2GB of total memory.

Practical Considerations Our main goal is to evaluate
scalability with increasing system size, so we cover the
range from 1 to 128 nodes for the five smaller datasets. With
Syn-LG the memory requirements for each individual par-
tition are much larger, hence we use 48 to 256 nodes in-
stead. In addition, linear support vector machines are only
tractable for the Alpha and Beta datasets. For k-nearest
neighbor classification, we reduced the test set size to 1,000
instances for the synthetic datasets and to 10,000 instances
for all other datasets to keep computation feasible within
the system.

6 Results & Analysis

We performed a large number of experiments across
datasets, algorithms, and system sizes as described above.
In this section, we summarize the results and provide anal-
yses and insights based on our findings with respect to the
trade-offs discussed earlier.

6.1 Execution Time: Cloud

Since our primary interest lies in the scalability analysis,
we start by examining the trends in execution time. Figure 3
show the execution time for decision trees, k-nearest neigh-
bor classification, and support vector machines on multiple
datasets for varying number of partitions. Within the grid of
plots, rows correspond to datasets and columns correspond
to learning algorithms. Each individual plot contains three
lines for the different data distribution methods.

The results for Syn-LG with decision trees and k-nearest
neighbors are omitted for space reasons as the trends ob-
served are very similar to Syn-SM, albeit at a larger scale.

In addition, for massive datasets it is difficult to measure
Push partitioning. This task is feasible for smaller datasets
and controlled environments, but becomes more difficult as
the size of the dataset or number of hosts and diversity of
the system increases. Next, we examine the results for each
of the algorithms in more detail.

Decision Trees The first column of Figure 3 shows strong
parallelizability of decision trees across all datasets. In most
of the experiments, the data distribution does not signifi-
cantly influence the execution time through 16 or 32 parti-
tions, demonstrating extensive, though not exclusive, use of
the 48-node dedicated cluster. Beyond that threshold, per-
formance diverges as jobs begin utilizing unreliable, hetero-
geneous nodes from the computing cloud. Even beyond the
cluster/cloud threshold, however, we are able to continue to
get improved turnaround times for several algorithms using
the Hybrid approach.

As an example of a case where additional parallelism did
not provide any added benefit, the KDDCup plot for deci-
sion trees shows that no improvements in execution time are
achieved beyond 32 partitions. For decision trees in partic-
ular, the small workloads result in very minimal classifier
training times. In addition, smaller jobs yield more relative
overhead and higher costs to complete the serial stages of
the process. It is unsurprising, then, that almost exactly the
same amount of time is required for the execution phases
when exceeding 32 partitions. For instance, doubling the
collection time (twice as many predictions to process per
instance) requires more time than is saved by the marginal
improvement in execution time afforded by the resources.

Another factor impacting the scalability of executions is
the data set size. The Syn-SM set continues to improve
execution time using Hybrid through 128-way parallelism,
whereas a smaller dataset, Beta, achieves limited further im-
provement beyond 32 nodes. The primary difference here
is that for small data sets, further partitioning results in
no effective gain when balancing batch job execution time
against additional overhead from greater parallelism (parti-
tioning, collection, and batch system overhead).

For almost all configurations the Hybrid approach
yielded shortest turnaround times, and Pull yielded the
longest turnaround times. Combining the advantages (and
mitigating the disadvantages) of the Push and Pull tech-
niques is particularly apparent as the number of partitions
gets larger, and for the larger datasets.

K-Nearest Neighbor Classification The results in the
second column of Figure 3 also show encouraging trends
in execution time with respect to the number of partitions.
For all datasets, we observe consistent improvements in ex-
ecution time while staying within the small cluster (up to
32 nodes) and with one exceptions also with 64 partitions.
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Figure 3. Scalability of Classifiers from a Cluster to a Cloud

This figure shows the runtime of executing Classify on five different datasets with three different classifiers. Each configuration
is scaled up from 1 to 32 nodes on a homogeneous reliable cluster, and then up to 128 nodes on a dynamic computing cloud.
Each abstraction is run in three different configurations: Push, Pull, and Hybrid, as shown in Figure 1. (Results for SVM are
not shown on the first three datasets, because the algorithm does not converge.) Each graph shows the number of hosts on
the X axis and the execution time in seconds on the Y axis. Generally speaking, the hybrid implementation is the most robust
across the various configurations.

128
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Figure 4. Scalability of Decision Trees on a Multicore Processor

Only for 128 partitions do we see increased execution times
in several cases, most notably for the Push method. This
behavior is due to some jobs getting placed on slower ma-
chines in the computation cloud. In addition, the plots only
show times for successful runs, but it is worth nothing that
with Push it sometimes took several attempts to complete
the task without experiencing a failure in the cloud.

The aforementioned trade-offs are also apparent in these
results, in particular with dataset Syn-SM. Neither Push nor
Pull are able to improve beyond 64 partitions, and in fact
both achieve significantly worse performance. However, the
flexibility of the Hybrid method allows it to efficiently dis-
tribute data and computation, resulting in additional gains
when going to 128 partitions.

Dataset size should also be taken into consideration
when determining the appropriate configuration for a given
problem. For smaller datasets, the choice of data distribu-
tion method is largely irrelevant, as all three lines exhibit
very similar behavior. But for large problems the Push and
especially Hybrid models are better suited as using the max-
imum number of available partitions achieves the best per-
formance and therefore is advisable.

Support Vector Machines As shown in the right column
of Figure 3, support vector machines exhibit behavior dif-
ferent from the other algorithms. Most notably, the major-
ity of experiments do not achieve the best execution time
for the largest number of partitions. And with SVMs this is
not only due to heterogeneity in the computation cloud, but
also to the strong dependency of the algorithm runtime on
the characteristics of the data.

Once again, the data distribution method is less of a fac-
tor than the amount of parallelism in determining the ex-
ecution time, although the pull method is consistently the
worst performer. In our experiments, we also observe a
tendency towards a smaller number of partitions than the
other algorithms. More specifically, the best performance
was achieved with 8§ to 16 partitions in all configurations.

6.2 Execution Time: Multicore

The same constructs that apply to running on clusters
or clouds also apply to a multicore environment on a sin-
gle machine. Figure 4 shows the runtime of the abstraction
applied over varying numbers of partitions in a dual-core
environment. When streaming using fifos, the partitioner
and the classifiers run in parallel. For files, the partitioner
runs first, placing the files, which are then accessed by the
classifiers after all partitions are created.

Streaming using files results in marginally faster
turnaround times. A machine with more cores would clearly
allow for greater scalability up to the limit at which the ab-
straction is bound by data rather than by computation. As
expected, once beyond the number of cores, efficiency de-
creases, as each classifier is fighting for limited resources.
Beyond 16 concurrent classifiers, progress slows signifi-
cantly and the turnaround time is much longer than the
serial execution. However, processors with a large number
of cores are on the horizon, and future work should evaluate
the Classify abstraction in such environments.

6.3 Accuracy

It is generally established that ensemble learning can
result in improved accuracy [4]. Our fundamental goal
in this paper is to work with that assumption and evalu-
ate the system aspects of distributed data mining. For the
experiments we consider primarily synthetic datasets, and
therefore observe only modest improvements.

Figure 5 shows the trends for each classifier on all
applicable datasets. We see that, in most cases, accuracy
is quite stable with an increasing number of partitions. No-
table exceptions are increased accuracy for decision trees on
the Alpha and Syn-SM datasets, and decreases for decision
trees on the Beta dataset as well as k-nearest neighbors on
the Syn-SM dataset with 8 partitions.



Decision Trees

K-Nearest Neighbors

Support Vector Machines

08| ] 0.8 f 08|
g o6, g g o6
E)) 0.4 Kgﬁftjg &8’ E)) 04
02y SyAnI-pSh'\aAl 02y Alpha
Beta Beta -
2 16 32 6 128 64 128 2 16 32 6 128
Number of Partitions Number of Partitions Number of Partitions
Figure 5. Trends in Accuracy with a Varying Number of Partitions.
Cluster Cloud
Pull - chop is necessary for large number of partitions - chop is necessary for large number of partitions
- for large clusters, submitting node can become a - for large clusters, submitting node can become a
bottleneck as the data server bottleneck as the data server
- worst turnaround time in most experiments - less concern about heterogeneity (fast nodes run
bigger share), reliability (data not on remote nodes)
Hybrid | - shuffle is preferred partitioning method - shuffle is preferred partitioning method
(can randomize, overlap, etc.) (can randomize, overlap, etc.)
- less risk of bottleneck in large clusters where - not reliant on central file server during execution
submitting node has limited resources - best choice for turnaround for most configurations
- sweet spot trading off parallelism for robustness (mitigates disadvantages of the other two methods)
Push - good for small runs with limited parallelism available | - trade-off between partitioning robustness (chop)
- shuffle is preferred partitioning method and performance (shuffle)
(can randomize, overlap, etc.) - trade-off between parallelism and reliability (more
- good for algorithms with super-linear complexity available resources but less reliable “in the wild™)
- brittleness less concern in controlled environment

Table 1. Analysis of Trade-Offs Between Different Criteria Based on Empirical Observations

7 Conclusion

We started the paper with three fundamental questions
regarding distributed data mining from a cluster to a cloud.
To that end, we proposed a scalable and efficient abstrac-
tion, called Classify, to knit together sequential programs
into data parallel graphs, allowing for a seamless deploy-
ment on clusters or clouds or multi-processor machines. We
evaluated three different and popular learning algorithms
with varying degrees of complexity on datasets with varying
sizes up to 54 GB. Table 1 summarizes the key results. We
reposition them with respect to our three questions below.

1. How to partition the data into subsets for learning?
The Hybrid method is most appropriate for complet-
ing runs of the abstraction in flexible environments,
as it exhibited the most benefits for both Cluster and
Cloud. It is more amenable to shuffle mode than the
other methods, because it allows the performance ad-
vantage of remote partitioning and mitigates the lack
of robustness of the shuffle algorithm.

2. What are the limits of scalability?

We observe that fundamental limits of scalability are,
as one would expect, available memory on each com-
modity workstation and convergence properties of the
algorithm. We observed that for some datasets, SVMs
failed to converge in reasonable time, even for much
smaller samples. For the largest dataset, we were un-
able to learn on partitions that were less than 1/16th
of the original data, largely due to memory issues.

3. How to exploit the available resources?

We observe that using commodity machines, as in a
cloud, via the proposed abstraction framework results
in efficient utilization of available resources, most of
which would otherwise remain idle. The abstraction
also allows efficient use of multicore machines by em-
ploying parallel data mining. As a result of generating
ensembles accuracy also improves, drawing another
key highlight of exploiting available resources: being
able to learn on the entire dataset in a reasonable time
while providing improvements in accuracy.
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