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Abstract—What viable technologies exist to enable the de-
velopment of so-called desktop virtual reality (desktop-VR)
applications? Specifically, which of these are active and capable
of helping us to engineer a multi-user, collaborative, virtual
environment (CVE)? An examination of the literature and
numerous project websites indicates an array of both overlapping
and disparate approaches to this problem. In this survey, we
review and perform a risk assessment of 16 prominent desktop-
VR technologies (some building-blocks, some entire platforms)
in an effort to determine the most efficacious tool or tools for
constructing a CVE.

Index Terms—Collaborative Virtual Environment, Desktop
Virtual Reality, VRML, X3D

I. INTRODUCTION

The benefit of virtual reality (VR) has been understood for
some time. An array of training uses for VR are sited by
[1], while [2] and [3] respectively demonstrate industrial and
Internet visualization techniques, [4] discusses the effective
use of VR and other interactive media in teaching and learning,
and [5] reviews a decade of VR technologies used to help
those with disabilities. This chorus is added to by further
examples of VR’s utility in artistic, cultural heritage, and
scientific visualization deployments [6], [7], and the ongoing
possibilities for experimentation and research offered by vir-
tual worlds [8]. Despite its many successes and potential, VR
remains a technology that has not seamlessly integrated with
the average user’s computing interface. For example, regarding
the compatibility of different VR systems with one and other,
in [7] the authors point out that

in terms of VR applications we are at the Tower
of Babel stage. Differences in tracking systems,
interface devices, operating systems, VR libraries,
graphics libraries, VR authoring systems, and even
versions of the same software mean that, unless you
have built your VR system with specific applications
in mind, not many (or no) existing VR applications
will run on it.

This issue is compounded by the fact that different levels
of immersion (a user’s sense of residing within a virtual envi-
ronment) often need different computing resources. Whereas
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desktop virtual reality (desktop-VR) typically uses nothing
more than a keyboard, mouse, and monitor, a Cave Automated
Virtual Environment (CAVE) might include several display
walls, video projectors, a haptic input device (e.g., a “wand”
to provide touch capabilities), and multidimensional sound.
The computing platforms to drive these systems also dif-
fer: desktop-VR requires a workstation-class computer, main-
stream OS, and VR libraries, while a CAVE often runs on a
multi-node cluster of servers with specialized VR libraries and
drivers. At first, this may seem reasonable: different levels of
immersion require different hardware and software. However,
the same problems are being solved by both the desktop-
VR and CAVE systems, with specific issues including the
management and display of a three dimensional environment
and user interactions within that environment. Even when we
remove the level of immersion as a factor (i.e., ignore the
differences between desktop-VR and CAVE interfaces), the
system designer still faces an array of VR software options—
some overlapping, some different—all geared to accomplish
similar tasks.

Immersion hardware requirements notwithstanding, the in-
compatibilities and duplications of effort among VR software
solutions may hinder the acceptance of VR and its integration
as a common computing interface. In an effort to grapple
with this problem, we narrow our focus just to the area of
collaborative, virtual environments (CVEs) accessible through
desktop-VR, and explore 16 software technologies relevant
to building CVEs. Although highly immersive environments,
such as CAVEs and head-mounted display (HMD) systems,
offer a more realistic user experience [9], we restrict our
consideration to desktop-VR for the following reasons:

• As desktops have become less expensive and more power-
ful (especially with regard to graphics adapters), viewing
and interacting with high quality VR environments is
more easily managed than in the past [10]

• The use of complex VR worlds for entertainment, com-
merce, and educational purposes is becoming more pop-
ular and effective for desktop users [11], [12]

• Giving attention to the area of desktop-VR may help
speed up the overall integration of VR into the average
user’s digital media interface
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In this survey, we will work toward identifying the strengths
and limitations of the desktop-VR technologies under review,
thereby highlighting the best option or options for building
CVEs. To help assess each technology, we propose that, for
any CVE to function, basic capabilities must be present in
the areas of graphics rendering and networking. Secondarily,
audio characteristics are desirable. Graphics rendering should
include the display of 2D and 3D images, ranging from simple
geometries to complex, texture mapped surfaces. Networking
should at least provide the ability to remotely access VR
content (e.g., images, sounds, scripts); preferably, it should
also include features for sharing a virtual environment among
multiple, simultaneous users. Last, audio should permit the
playing of spatial sound; that is, sound with location, direction,
and intensity. It should be carefully noted that not all of the
technologies in our survey include capabilities we consider
to be primary (i.e., graphics and networking), or primary
and secondary (i.e., graphics, networking, and audio). Less
equipped software is also considered if it is commonly used
as a CVE building-block.1

Finally, some VR technologies include out-of-the-box fea-
tures that are convenient to the task of building a CVE (e.g.,
avatar support, multi-user capabilities, asset management,2

an art path,3 and rigid-body/particle physics). Having these
extra features could mean significantly less work for the CVE
developer. Therefore, the two extra features we believe to be
the most critical, avatar support and multi-user capabilities,
are taken into account later during a risk assessment of the 16
technologies under review.

The remainder of this paper is structured as follows: the
next section summarizes related works; Section III outlines the
nomenclature and approach we use in our review of VR soft-
ware technologies; sections IV, V, and VI include assessments
of the technologies (divided into three categories), Section VII
provides a qualitative risk assessment of the VR technologies,
and Section VIII ends the survey with concluding remarks.

II. RELATED WORK

Various desktop-VR technology surveys exist within the
literature, a few of which compare tools that can be used
to construct a CVE. One such effort, made by [13], out-
lines a framework for comparing five web-based visualization
technologies, including Scaled Vector Graphics (SVG), Dy-
namic Hypertext Markup Language (DHTML), Virtual Reality
Modeling Language 2 (VRML 2), Extensible 3D (X3D), and
Java3D. This framework consists of four high-level categories
(technical capabilities, interactivity, support, and application
specific) used to measure the strengths and weaknesses of

1It is noteworthy that all of the software we survey, from the least to
the most equipped, is graphics oriented. Text-based multi-user environments
(e.g., Multi-user Dungeon [MUD] and MUD Object Oriented [MOO] systems)
notwithstanding, our definition of desktop-VR requires a 3D graphical display.
Moreover, one can build a desktop-VR environment that does not utilize
networking or audio, although, absent networking, such an environment would
not be collaborative.

2For our purposes, this term means tracking the inventory and disposition
of objects comprising a virtual world.

3The tools and compatibility available for integrating images, textures,
meshes, sounds, etc. into a virtual world.

the technologies in question. Although at times somewhat
subjective, the framework’s metrics do a reasonable job of
capturing the utility and functionality of each technology.
Ultimately, the authors select X3D as the best option for
displaying 3D visualizations in an experimental project they
carry out.

In a survey covering similar territory, [10] offer descriptions
of what they term emerging web graphics standards and
technology. Consideration is given to several major areas,
including 2D and 3D graphics standards (e.g., SVG and X3D,
respectively), approaches to client synchronization and co-
herency in CVEs, virtual humans represented on the Web (e.g.,
as highly-defined “talking heads” or fully rendered human
bodies through the Humanoid Animation standard [H-Anim]),
and alternative approaches to traditional, projective-geometry-
based web graphics. The authors do not offer any significant
conclusions in their discussion, except to comment on areas
of future research important to the technologies under review.
Other work in the same vein, though more geared toward
highly immersive technologies such as CAVEs, includes an
outline by [9] of the potential and difficulties entailed by the
use of VR for scientific visualization, and an entry level review
of VR terminology and technology by [7].

In another survey, [14] compare and contrast different
free and commercial implementations of the X3D standard.
Specific technologies include the X3D browsers Flux Player,
FreeWRL, OpenWorlds Horizon, and Xj3D, and the commer-
cial CVEs from Blaxxun, Bitmanagement Software, and Oc-
taga. The authors focus their discussion on how suitable these
technologies are for constructing an X3D-compliant networked
virtual environment (NVE).4 Only the contending CVEs are
substantively compared with one and other according to ten
simple criteria: X3D support, type of architecture, H-Anim
support, streaming video support, voice-over-IP support, ex-
tensibility, scripting support, presence of X3D authoring tools,
supported operating systems (OSs), and cost. The authors point
out the risks of developing with commercial software (i.e.,
cost and lack of options should the vendor decide to change
their product), and offer these as reasons for leveraging open
source technology instead. Noting that the Xj3D Java libraries
offer a “flexible and cross-platform Java architecture,” they use
Java and Xj3D in the construction of an X3D browser and the
retrofit of an existing, but limited, research CVE.

[15] focus on X3D, too, in this case surveying its structure
and composition. Specifically, the authors are interested in
applying desktop-VR to the endeavor of software visualiza-
tion; that is, using a VR context to represent the relationships,
statistics, and source code text of software systems. They
conclude that the X3D standard offers the means to support
software visualization, although they find text rendering (for
displays of source code) to be an area of weakness.

Detailed consideration is given to X3D’s capabilities by [16]
as well, as they discuss the development of an application
to display user-selectable configurations of a given product
in high-quality 3D. Several X3D browsers are compared by

4The term networked virtual environment is synonymous with collaborative
virtual environment.
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the authors who note that the lack of reflection mapping and
shadowing in the X3D standard may be overcome through
appropriate extensions to the standard.

Some desktop-VR technology surveys are more conceptu-
ally oriented, choosing to review precepts and foundations
relevant to the technologies of interest as opposed to specific
tools or standards. For example, with a stated objective to
“provide an awareness of Virtual Reality with respect to simu-
lation,” [17] offers a concise overview of VR basics, including:
a definition of VR; brief, background discussions about VR
found in the media and as an effective means of simulation;
physical mechanisms for interaction and control within virtual
worlds; and a thorough discussion of VR in manufacturing (a
combination referred to as “virtual manufacturing”) along with
several real-world examples. Similarly, [18] survey “various
[CVE] technology factors and demonstrate their impact on
closely-coupled collaboration.” These factors include: task
design; immersion, field of view, and navigation; manipula-
tion technique, workflow, social human communication, user
interface, distribution, and task performance. Ultimately, the
authors classify these into technology factors, human factors,
and application factors. They further note that each grouping
must be given attention since many of the contained elements
have interrelationships.

While all of these works help to build a picture of desktop-
VR technology, little guidance is offered about which tech-
nologies are most strategic. Especially with regard to the
engineering of CVEs, we contend there are specific, well
suited technologies that developers should strongly consider.
Moreover, standardizing on such tools may help deal with the
incompatibilities and duplications of effort among some VR
systems, thereby leading to better integration of desktop-VR
with the common digital media experience.

III. OVERVIEW OF NOMENCLATURE AND
APPROACH

Our stated goal is to assess 16 desktop-VR technologies
applicable to the construction of CVEs. As a result of this
survey, we intend to note the most efficacious tool or tools.
Three broad categories will be used to group the technologies
of interest and are defined as follows:

• Application Programming Interface (API): one or more
libraries with documented methods that abstract lower-
level resources (e.g., a graphics or audio API)

• Framework: a collection of APIs that provides function-
ality across multiple domains (e.g., graphics, audio, and
networking) and is extended by support tools

• Platform:5 a specialized and complete environment within
which a software system may be built, tested, and exe-
cuted; the platform must be deployed anywhere software
based upon it is installed

5Below, note that we do not include Java3D under the “platform” category,
even though the Java virtual machine and runtime libraries must be installed
anywhere Java3D software is executed. Although Java offers the necessary
resources (e.g., networking and audio) to complement Java3D’s graphics
rendering and construct a CVE, by itself Java3D is designed to be general
purpose in nature. Thus, we believe it does not align well with the platform
designation used herein.

Within each of these categories, only active technologies
(i.e., maintained roughly within the past year) that are free
and open to developers are considered. Thus, we exclude
proprietary options such as the Adobe Flash and Shockwave
platforms,6 the Octaga suite of tools, the Bitmanagement
Software SDK, etc. We restrict ourselves to active, open source
technologies as a way to reasonably limit scope and emphasize
software in which the end-users are the primary stake holders.
Also, our intention is not to carry out an exhaustive review of
open source VR software: such an undertaking is impractical at
best. Instead, we select 16 noteworthy, relevant technologies,
any of which can play a significant role in the development
of a CVE, and provide simple, concise descriptions of each.

Independent of its category, each technology is examined
to determine its capabilities, level of maturity, and adherence
to a formal standard. Capabilities denote whether or not the
technology in question provides a graphics rendering engine
(G), network communications (N), and audio support (A).
Maturity indicates how long a given technology has been in
existence—an inception year is provided. Adherence to an
open and free standard connotes how easily a technology can
interoperate with other tools and 3D models. Of specific inter-
est are VRML 2 and X3D, which became ISO/IEC standards
in 1997 and 2004, respectively [21, pp. 2-3]. Maintained by
the Web3D Consortium, X3D is the latest iteration of VRML
and is backwards compatible with VRML 2. Finally, important
or interesting facts are provided in a comments entry for each
of the 16 technologies. Table 1 summarizes the technologies
of interest.

Following our review, in Section VIII we undertake a
qualitative risk assessment to derive what we believe is the
best option or options for building a CVE. In this assessment
significant factors include support that a given technology may
have for: (primary) graphics rendering and networking, and
(secondary) audio. In addition, software engineering charac-
teristics such as utility (given by the presence of avatar and
multi-user support), project documentation and help resources,
support for relevant standards, and deployment challenges are
all taken into account.

IV. APIS

As discussed in Section IV, an application programming
interface (API) is considered to be one or more well-defined
libraries that provide access to underlying hardware/software
resources. In other words, the API works to abstract lower-
level resources by presenting the software developer with a
documented set of methods that operate as a wrapper. Al-
though they do not offer as much convenience as frameworks
or platforms, APIs do enable a “best of breed” approach
toward software engineering (i.e., a developer can draw from
multiple, well-concieved technologies).

6Adobe claims that its Flash and Shockwave players have been installed
on a majority of all Internet-enabled PCs [19]. The Flash player handles
content created by Adobe’s Flash CS3 Professional (2D animations, web
advertisements, web interfaces), while the Shockwave player views content
created by Adobe’s Macromedia Director (multi-user games, 3D content and
product simulations). There is a collection of open source alternatives to
CS3 and Director [20], but the Flash and Shockwave specifications remain
proprietary and under the control of Adobe.
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In the following subsections we examine APIs for FreeVR,
Java3D, OGRE, OpenGL, OpenSceneGraph, OpenSG, Open-
VRML, the X3D Tool Kit, and Xj3D.

4.1. FreeVR

Written in C with support for multi-processing, FreeVR
is aimed at providing a uniform, cross-platform means of
accessing and integrating with a variety of VR systems and
configurations [22]. At present, the FreeVR library compiles
on various UNIX platforms, OS X, and Cygwin for Microsoft
Windows. Although suitable for use in highly immersive
environments such as CAVEs, FreeVR can also be deployed
in desktop-VR settings. Graphics rendering is handled by the
OpenGL library; the OpenSceneGraph and OpenSG scene
graph libraries may also be used.

Some of FreeVR’s notable strengths address interfacing
with VR equipment and the administration of FreeVR pro-
grams. The FreeVR API makes it possible to map physical
mechanisms, such as those used for input, to logical devices.
This enables easier programatic access to the mechanisms
while abstracting and simplifying their use. Also working
toward ease of use, FreeVR employs runtime configuration
(RC) files to specify details about system resources, processes,
and program input/output [22]. By editing an RC file, an
administrator can change an executing FreeVR program for
purposes of debugging, fine tuning, or interfacing with the user
differently. Remote, administrative access to a running FreeVR
program is permitted through TELNET or a Tcl/Tk GUI,
and includes the ability to view and manipulate information
and settings. Although this feature does not also allow the
editing of RC files, it does enable debugging and the display
of program statistics (e.g., frames per second).

Despite its strengths, FreeVR does face some challenges.
First, it is missing support for the network and audio com-
ponents needed to implement a CVE. A variety of libraries
external to FreeVR can be drawn upon to fill these gaps (e.g.,
the FreeVR source code documentation recommends Virtual
Sound Server [VSS] or Bergen Sound Server for audio), but
the lack of a uniform, homogeneous approach may result in in-
compatible FreeVR deployments. Next, FreeVR does not have
the option of using a VR standard unless OpenSceneGraph or
OpenSG, both of which can support VRML 2, is chosen as the
graphics renderer. Unfortunately, the updated and more robust
X3D standard is not currently an option with either scene
graph API. Finally, the knowledge base for FreeVR is still
early in its evolution. Materials such as basic documentation
and tutorials appear somewhat rough and sparse.

4.2. Java3D

Java3D offers the ability to manage and render 3D graphics
by way of a scene graph data structure [23, pg. 2]. A scene
graph is a directed acyclic graph that permits efficient storage
of, and access/updates to graphics data. More specifically,
scene graphs enable “a hierarchical approach to describing
objects and their relationship to each other [24],” such that
each level of the hierarchy denotes some type of grouping,
while the leaves represent the targets to be rendered (e.g.,

graphics or sound). Because scene graphs enable critical
functions like culling (not displaying images that fall outside
of the active viewpoint) and sorting, they are used in other
desktop-VR technologies, as well (e.g., OpenVRML, X3D
Tool Kit, Xj3D). One method to implement a scene graph
is given by the Composite design pattern, where hierarchical
tree structures are built from objects that may be uniformly
managed as compositions or individually [25, pp. 163-173].
The Java3D API can use OpenGL or Microsoft’s DirectX to
render images managed by its scene graph.

In addition to the benefits of a scene graph, Java3D offers
the platform independence of the Java Virtual Machine and can
execute under Apple OS X, Linux, Sun Solaris, and Microsoft
Windows as an application or a web browser applet. Through
the use of an extension library, J3D-VRML97 [26], the Java3D
API can utilize VRML 2 models; this is also how the API
gains basic networking capabilities (i.e., to load remote VR
content).

Because Java’s extensive library of packages can drawn
upon to fill in many functionality gaps, Java3D is a viable CVE
building block despite its limitations. Its weak areas include
a lack of support for audio and X3D, as well as size issues.
Though its use of the VRML 2 standard is a benefit, at the
same time none of the enhancements and improvements of
X3D are available to Java3D (the Xj3D API addresses this—
see further below). Also, it may be that a given target host
does not possess the Java Runtime Environment (JRE) and/or
Java3D. This could make the installation of Java3D-based
CVE software more complicated, since the JRE and Java3D
would need to be bundled in the install process.

4.3. OGRE

The Object-oriented Graphics Rendering Engine (OGRE)
is a C++ API that focuses on modularity and functionality.
Available for Linux, Apple OS X, and Windows, OGRE’s
dedicated purpose is to “make it easier and more intuitive
for developers to produce applications utilising hardware-
accelerated 3D graphics [27].” To this end, the API is
specifically architected to easily interface with projects that
might need 3D graphics abilities. In addition, OGRE itself is
designed to be extended through plugins: a number of such
add-on mechanisms exists within the OGRE community and
provides enhancements ranging from indoor and outdoor scene
rendering to bindings for physics engines [28]. Finally, it is
notable that OGRE’s documentation and community support
are both highly evolved compared to many other open source
projects.

Similar to OpenGL below, OGRE is strictly a graphics
engine. As such, it would need to be supplemented with
network and audio components if used to build a CVE. Also,
it has no direct support for VR modeling standards such
as VRML or X3D. Nevertheless, because OGRE has been
specifically designed as an encapsulated and extensible API
these limitations may really be inconveniences more than
drawbacks.
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4.4. OpenGL

Our inclusion of OpenGL in this survey is somewhat
contrary to one of our goals: to review only open source
technologies. Although freely available to developers, OpenGL
is not open source. However, its ubiquity and pervasive use in
most other graphics-related software make it the elephant in
the room that we must address.

A creation of Silicon Graphics, Inc., since 1992 the OpenGL
API specification has become a de-facto means of handling 2D
and 3D graphics on desktop computers. Nearly all significant
OSs (Apple OS X, Linux, FreeBSD, Sun Solaris, IBM AIX,
HP-UX, Microsoft Windows, etc.) come bundled with, or can
easily compile the OpenGL libraries [29]. Underlining this
point, each of the technologies reviewed in this survey either
uses OpenGL directly or has the option of doing so. Hence,
regardless of the tool or tools a developer might pick from our
list of 16, the OpenGL API is almost certainly involved. In ad-
dition to its widespread use, the OpenGL libraries are callable
from several languages, including C, C++, Python, Perl, Java
and others [30]. Some additional strengths include the ability
to handle computationally intense graphics rendering (e.g.,
programable shading, lighting, texture mapping, non-uniform
rational B-spline [NURBS] curves and surfaces), the flexibility
to handle graphical elements such as reflections, support for
extensions that take advantage of features in specific graphics
cards, and a developed knowledge base [31] [32].

Although its ubiquity, capabilities, and maturity make it an
attractive technology for constructing CVEs, OpenGL does
have some limitations. First, it is an API that only handles
graphics: it offers no networking or audio components, and
includes no functionality dedicated to the semantic of a multi-
user VR world. As intimated above, however, other VR-
motivated technologies may be able to work around this issue
by incorporating OpenGL into a more complete solution.
Finally, the OpenGL specification is not free to all parties [33]
(i.e., hardware platform vendors). Hence, it is possible that
software written with OpenGL may not execute on graphics
cards from vendors who do not pay to license the API
(although, this may be a low-risk problem due to OpenGL’s
widespread nature).

4.5. OpenSceneGraph

The OpenSceneGraph (OSG) project implements a scene
graph data structure on top of OpenGL to manage 2D and
3D graphics. Beyond its utility as a scene graph implemen-
tation, other strengths of the OSG API reside in its degree
of portability, language support, and extensibility. Written in
C++ with support for multi-threading and processing, OSG
is compatible with the same platforms as OpenGL (see the
previous subsection) and through multiple languages including
Java, Python, Tcl, .Net, and others. OSG can also be expanded
through what are termed “Node Kits”: separate libraries,
added at compile- or run-time, that enhance a project with
additional graphics features and special effects. Finally, OSG
supports a wide range of graphics file formats and, through
the OpenVRML API, the VRML 2 standard.

The issues faced by OSG are similar to those of OpenGL. It
is an API that only deals with graphics, necessitating the use
of other resources for networking and sound that may not be
as portable as OSG itself. Also, though unrelated to OpenGL,
the utility of supporting the VRML 2 standard is diminished
by OSG’s lack of support for the improved X3D standard.

4.6. OpenSG

OpenSG is a project with strong similarities to OSG. Both
are OpenGL-based, scene graph APIs written in C++. Both
are compatible with the same extensive list of platforms,
although there appear to be more language bindings for OSG.
Both support multi-threading and processing, but OpenSG is
explicitly outfitted to handle graphics clusters [34]. Both offer
high-performance scene graph management, although OSG
offers a compile- and run-time extension feature (Node Kits).
Finally, both support a wide range of 3D file formats as well
as VRML 2–if the OpenVRML API is used.

OpenSG’s challenges are identical to those of OSG; see the
previous subsection for details.

4.7. OpenVRML

The OpenVRML libraries provide an API for the VRML 2
and X3D standards. Written in C++, OpenVRML is a cross-
platform API that uses OpenGL as a graphics renderer and can
operate on those platforms where OpenGL is found (see the
subsection on OpenGL). Moreover, if the GIMP Tool Kit Plus
(GTK+) user interface libraries are available to OpenVRML,
a web browser plugin may also be deployed for Mozilla-based
browsers. Built around the use of a scene graph, both VRML
and X3D offer a script-based means of describing, rendering,
and controlling VR scenes. Complete with support for audio,
dynamically changing environments, and avatars, VRML and
X3D environments are typically accessed through a web
browser equipped with an appropriate plugin. Alternatively, a
dedicated application, such as one built on top of OpenVRML,
may be used.

Although inherently suited to much of the CVE building
endeavor, OpenVRML does have a few weak areas. First, it
does not include a networking capability. It attempts to manage
this by providing a C++ abstract class that the CVE developer
can use as an interface to their own networking resources.
This may be an acceptable approach in some circumstances,
but it leaves open the possibility of underlying networking
components that operate in one environment but not another
(possibly leading to CVEs that are not fully cross-platform).
Next, despite its implementation of X3D, there is currently
no support for X3D’s XML encoding. This is significant
since XML is a structured, verbose language capable of
being validated against a Document Type Definition (DTD)
or XML Schema Reference; it “is the basis of nearly every
data language used on the World Wide Web [21, pp. 22-27].”
Finally, as with the FreeVR API, the OpenVRML project’s
documentation is somewhat thin and in need of expansion and
tutorials.
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4.8. X3D Tool Kit

The X3D Tool Kit is a once-abandoned project now reborn.
From 2002 to 2004 the original author developed the API into
an implementation of the X3D standard that offered significant
support for static X3D scenes—where sensor and collision
nodes were not used [35]. In 2006 the project was revived by
a group of developers whose stated emphasis was “on proper
X3D behavior as specified by the standards committee [36].”
Written in C++, the X3D Tool Kit uses built-in scene graph
mechanisms to manage and process 3D graphics information,
but relies upon OpenGL for image rendering. Among the X3D
Tool Kit’s strengths are that its design enables the extension
of the API, and its use of C++ and OpenGL permit it to be
compiled on the platforms where OpenGL can operate (see
the subsection on OpenGL).

The challenges facing this latest incarnation of the X3D
Tool Kit are manifold. First and foremost, support for more
of the X3D standard, especially collision and sensor capa-
bilities, is needed. Next, the X3D Tool Kit is lacking a
network component. As with each of the APIs reviewed to
this point, the absence of basic networking capabilities can
lead to incompatible deployments of CVE software, since
different developers may elect to use different networking
mechanisms. Finally, the documentation available for the API
exists primarily on the original X3D Tool Kit web site, which
was apparently frozen in 2004. Thus, any changes or updates
to the API are not yet being discussed by the new developers.

4.9. Xj3D

The Xj3D API is maintained by the Web3D Consortium,
the same organization responsible for the VRML 2 and X3D
standards. Written in Java, Xj3D can operate anywhere the
Java Virtual Machine can, provided there is also support for
the graphics rendering engine—the developer may elect to
use Java3D or OpenGL (through the Java OpenGL [JOGL]
libraries) [37]. Xj3D is a mature implementation of the X3D
standard, offering not only a graphics rendering mechanism,
but audio and basic network components as well. As with
Java3D, because the Xj3D API libraries are simply an addition
to Java, the use of Xj3D makes the standard Java environment
available to the developer. Other notable strengths of Xj3D
include the use of a scene graph to manage VR information,
support of XML to encode VR scenes, support of the H-Anim
standard to facilitate avatars, compatibility with VRML 2
(increasing the base of 3D models available to X3D systems),
and the ability to operate as a Java applet or stand-alone
application.

The drawbacks of Xj3D are primarily logistical in nature.
Similar to Java3D, the basic Java runtime environment (JRE)
may or may not be bundled with a given OS. Hence, the
install base for a CVE built with Xj3D may need to include
the JRE, Xj3D libraries, Java3D and/or JOGL, and the CVE
software itself. If a CVE client were deployed as an applet,
the collective size of all Xj3D libraries (roughly 27 megabytes
at the time of this writing) may be a significant obstacle.
An alternative option could be to remotely deploy a client

application through Java Web Start; the application could then
be executed later without need of further downloads.

V. FRAMEWORKS

As noted earlier in Section IV, we define a framework
as a group of APIs that abstracts multiple domains of soft-
ware/hardware resources and is extended by various support
tools (e.g., content editors, administration utilities). A ro-
bust framework for CVEs might cover several areas within
graphics, cluster resource control, client-server or peer-to-
peer networking, multi-user management, and sound. This
enables the software developer to work under the auspices
of one API/tool collection, possibly reducing documentation
and maintenance overhead.

In the following subsections we consider the Crystal Space,
Delta3D, Quake III, VR Juggler, and Uni-Verse frameworks.

5.1. Crystal Space

Since its beginning in 1997, Crystal Space has evolved into
a highly modular collection of C++ libraries offering CVE-
related functionality in graphics (OpenGL-based or a built-in
software renderer), networking, spatial sound, and other areas
[38]. Compatible with Linux, Apple OS X, and Microsoft
Windows, the Crystal Space framework is intended to operate
as an application engine: through an extensive system of API
plugins, a developer is able to include/exclude those software
components relevant to a project. In addition, through the op-
tional high-level CEL (Crystal Entity Layer) interface, features
important to game/multi-user environments (e.g., networking,
game logic) are abstracted and made more accessible [39].
Another high-level interface called CELstart makes it possible
to program Crystal Space projects entirely in Python or XML,
and to bundle projects into standalone, executable bundles
[40]. Language bindings for Java and PERL are also available
for Crystal Space. Finally, an extension for the Blender 3D
modeling software allows content to be created for and directly
exported to Crystal Space.

The primary area of weakness for Crystal Space is its
lack of support for VR standards, making it difficult to share
3D models and environments with other, unrelated systems.
Nevertheless, the integration of proprietary 3D model speci-
fications and a convenient means of exporting content from
Blender to Crystal Space may be sufficient for some CVE
projects.

5.2. Delta3D

Created and maintained by the Modeling Virtual Environ-
ment and Simulation (MOVES) Institute at the Naval Post-
graduate School in Monterey, California, Delta3D is aimed at
VR applications in the realm of defense as well as modeling
and simulation. Described on its project web site as “a fully-
featured game engine appropriate for a wide variety of uses
including training, education, visualization, and entertainment
[41],” the Delta3D framework draws upon a wide array of
APIs and support tools. Written in C++, the framework is
compatible with Linux and Microsoft Windows with unofficial
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support for Apple OS X. Operating under the premise that low-
level resources should not be obfuscated by its APIs, Delta3D
offers a high-level interface across a range of territory while
permitting access to low-level functionality if desired [41].
Utilizing a flat intra-framework organization, there are 14 APIs
comprising this interface.

Highlights of the Delta3D framework may be found the
areas of graphics, networking, sound, and support utilities.
The core API’s graphics rendering capabilities are based on
OpenGL and make use of OpenSceneGraph, thereby integrat-
ing the VRML 2 standard. Environmental effects (e.g., clouds,
time of day), particle effects (e.g., smoke), and physics (e.g.,
gravity, collision detection) are also addressed in the core.
Delta3D’s networking and game APIs offer client-server or
standalone client modes of operation. Sound, both 2D and
spatial, is managed by an audio API. Examples of utilities to
assist with creating and operating the Delta3D environment
include a 3D map editor (the Simulation, Training, and Game
Editor [STAGE]), a particle effects editor, and a 3D model
viewer. Other strengths of Delta3D include APIs for avatar,
weather, and terrain management, and language bindings for
Python scripting.

Although Delta3D is a modular framework covering a wide
area of functionality it does have limitations regarding VR
standards. While it is useful that VRML 2 is supported through
OpenSceneGraph, Delta3D is unable to take advantage of the
newer X3D standard and accompanying improvements.

5.3. Quake III Engine

Initially powering id Software’s Quake III Arena commer-
cial game in 1999, the Quake III engine is also referred to
as id Tech 3 [42]. In 2005, id Software released the game
engine as open source under the GNU GPL license, as it had
done for the earlier Quake and Quake II engines. We focus
on the Quake III Engine because it is the more feature-rich
in the series, offering graphics rendering, spatial sound, and
network capabilities that all attempt to improve upon the first
two engines.

Written entirely in C and compatible with Apple OS X,
Linux, and Microsoft Windows, the Quake III Engine comes
ready with CVE resources, some of which are also optimized.
As a game engine, the graphics rendering and networking
functions are designed with performance as a goal: graphics
are managed through OpenGL and require 3D hardware ac-
celeration, while networking includes a built-in compression
capability to more efficiently transmit data between client
and server [43]. Also included in the engine’s bundle is the
Q3Radiant map compiler and editor, though a newer version,
called GtkRadiant, is freely available, too [44]. Another feature
of the Quake III Engine is its use of a virtual machine
(referred to as the Quake Virtual Machine, or “qvm”) to readily
and securely enable game modifications by end-users. Virtual
machine files are written in ANSI C, compiled into assembly
code using the freeware LCC compiler, and then converted
into qvm byte code via the q3asm assembler—both LCC and
q3asm are included with the Quake III Engine bundle [45].
Finally, as a multi-player VR game engine, the Quake III

Engine offers full support for avatars and text chat among
participants.

Challenges of using the Quake III Engine are relegated to
a lack of support for VR standards and somewhat dispersed
documentation. Regarding standards, proprietary 3D model
formats such as MD3 and BSP are used for avatars and maps,
respectively. Such models may be difficult to create or ma-
nipulate, and are less interchangeable with other VR systems.
Also, the Quake III Engine’s documentation is abundant, but
scattered around many locations on the Internet. When id
Software released the Quake III Engine as open source, they
included precious little documentation. Presently, most of the
information that exists has been voluntarily produced, and
there is no authoritative resource. Nevertheless, many helpful
documents, tutorials, and discussion forums do exist, although
one must search carefully to find truly useful resources.

5.4. VR Juggler

VR Juggler is a C++ framework that uses APIs in several ar-
eas to provide desktop-VR and other levels of VR immersion.
There are two basic framework layers: the Juggler Portable
Runtime (JPR) API, and the VR Juggler API and micro-
kernel. The JPR resides on top of the OS and works to abstract
critical system resources such as threads, I/O, and sockets [46].
Resting on the JPR, the Juggler API/micro-kernel layer “acts
as ‘glue’ between all the other Juggler components [47].” This
two-layer foundation allows a developer to build application
objects in C++ that are executed by the Juggler micro-kernel.
One of the paramount goals of this framework is to operate
as a middle-ware between applications and underlying VR
systems. In so doing, software can be built against the VR
Juggler APIs with little regard for the equipment underneath;
such programs become inherently portable among different VR
Juggler environments.

Rounding out the framework, several more APIs and tools
exist within the Juggler API/mico-kernel layer, including:

• Gadgeteer – a tool that facilitates VR device management
• Juggler Configuration and Control Library (JCCL) –

configuration and performance monitoring tools for the
Juggler system

• Tweek – APIs to build extensible, Java-based GUIs that
communicate with underlying Juggler applications

• PyJuggler – language bindings that permit the use of
Python Juggler application objects

• VRJ.NET – language bindings that permit the use of C#
and VB.NET Juggler application objects

• Sonix – an API for audio hardware and other audio APIs
VR Juggler relies on the use of OpenGL, OpenSceneGraph,

or OpenSG to render images. If either OpenSceneGraph or
OpenSG are utilized, then support of the VRML 2 standard is
brought along. Regarding audio rendering, although the Sonix
API is capable of playing sound on its own, other audio APIs,
such as OpenAL, may be used for more full-featured sound
options. Finally, a tool called Maestro [48] is employed to
control the execution of VR Juggler applications on a cluster
of machines. Maestro includes a GUI to assist an administrator
with the task of overseeing and monitoring Juggler activities.
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Despite VR Juggler’s breadth of capabilities, it does
face some challenges. To begin with, it offers no network
component—save that required to facilitate its support of
graphics clusters. As discussed in earlier subsections, while
it is possible for a developer to utilize a network API of their
choosing, doing so may result in software that is incompatible
with other VR environments. Also, support for a VR standard
is absent in VR Juggler unless OpenSceneGraph or OpenSG
is used for rendering graphics. However, as noted for FreeVR
and Delta3D, the updated and more robust X3D standard is
not currently an option with either of these scene graph APIs.

5.5. Uni-Verse
Founded on the Verse [49] networking protocol, the Uni-

Verse framework attempts to “create an open source Internet
platform for multi-user, interactive, distributed, high-quality
3D graphics and audio [50].” To realize this premise, Uni-
Verse is cross-platform (Apple OS X, Linux, Microsoft Win-
dows), client-server oriented, and includes several C APIs and
support tools. The Verse protocol is designed to efficiently
share 2D and 3D image data among applications, thereby
creating a distributed graphics processing environment. The
Uni-Verse server, clients, and various support tools leverage
Verse to communicate graphical information, while the Uni-
Verse Sound Rendering Protocol is used for audio data.
Image rendering is handled through OpenGL with support for
OpenSG under Microsoft Windows. With OpenSG, the VRML
2 standard is available if the OpenVRML libraries are used.
Sound rendering is facilitated by an audio/video programming
environment called Pure Data [51] (a separate project from
Uni-Verse) that must be installed on a given Uni-Verse client
machine.

The Uni-Verse server and client are collectively made of
a Verse server and the client software suite known as Quel
Solaar. Noteworthy tools packaged in Quel Solaar include
a rendering client also named Quel Solaar, a 3D modeling
tool called Loq Airou, and a graphical 3D scene editor called
Connector. The Quel Solaar client is based on OpenGL and
described by the Uni-Verse project as a high-quality graphics
renderer for desktops [52]. Loq Airou, also based on OpenGL,
provides a means for creating 3D objects on a Uni-Verse
server through an informal “sketch pad” user interface. Finally,
Connector enables the editing and management of objects
stored on a Uni-Verse server.

In addition to the server and client software, other Uni-Verse
system components include, but are not limited to:

• Enough and Ample APIs – written in C and C++,
respectively, these libraries help in the development of
Uni-Verse programs

• PyVerse – a language binding to write Verse programs in
Python

• Purple – a tool that implements a scripting environment
for Uni-Verse

• Saver and Loader – tools to save and load, respectively,
a Uni-Verse server’s state

• Network security – clients may be authenticated by a
Uni-Verse server using a cryptographically strong cipher
(RSA)

Although Uni-Verse offers a full-featured environment, it
does face some issues. First, sound rendering is complicated
by the need for the Pure Data programming environment to
be installed on a Uni-Verse client machine. Second, support
for the VRML 2 standard, while useful, falls short of the
capabilities offered by the newer X3D standard.

VI. PLATFORMS

Our definition for platform picks up where that of frame-
work leaves off. In Section IV we specify that a platform
is a fully contained, specialized environment within which a
solution may be developed, tested, and executed. As such,
wherever a platform-based solution is deployed, the platform
must also be installed. Of the 16 technologies surveyed in this
paper, only Croquet and Project Wonderland are considered to
be platforms.

6.1. Croquet

Built on top of Squeak (an open source derivative of
Smalltalk) Croquet’s aim is to provide a distributed, vir-
tual environment that emphasizes realtime, multiuser col-
laboration. The Croquet platform employs OpenGL-based
graphics, OpenAL spatial sound, and a peer-to-peer network-
ing/synchronization architecture (TeaTime) that facilitates ob-
ject sharing and communication [53]. Due to Squeak’s cross-
platform nature, Croquet is available for Apple’s OS X, Linux,
and Microsoft Windows. It leverages Squeak’s integrated de-
velopment environment (IDE) to allow the creation, testing,
debugging, and operation of Croquet software. Squeak’s late-
bound characteristics (inherited from Smalltalk [54]) make
it is possible for Croquet program code to be accessed and
altered not only prior to, but during execution. Moreover, the
TeaTime architecture immediately propagates such changes to
all relevant, distributed end-users. Croquet is designed under
the premise that its applications will operate across small
and large scale computing environments; in TeaTime, this
is supported through object replication and synchronization.
Another of Croquet’s compelling strengths is that, out-of-the-
box, it serves as a functional CVE: several of its example
programs are fully operational CVEs with support for avatars,
text chat, and the collaborative sharing of applications (e.g.,
text editors).

Relative to the goal of constructing a CVE, Croquet comes
armed with an extensive set of features and capabilities. Nev-
ertheless, some challenges and limitations remain. First, the
current state of Croquet favors use by developers as opposed to
typical end-users: the platform operates from within Squeak’s
IDE and, thus, may not be suitable for deployment to a
general user population. To this point, the project web site
notes that “in its current state of development, Croquet should
be thought of as an enabling technology intended for use
by software developers to create their own applications or
customized OpenGL-based game engines - complete with user
interfaces and application-specific features and functionalities
[55].” Next, the prospect of providing Croquet CVE software
to an end-user is troubled by the need for the whole Croquet
platform to go along. At the time of this writing, Croquet
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comes packed into a 72 megabyte archive, regardless of the
target OS. In this regard, it is similar to Java3D, Xj3D, or
Project Wonderland (below), with the exception of having no
Web Start or web browser applet channel for delivery. Last,
Croquet requires a more modern workstation to perform well:
the use of a late-bound language coupled with the multimedia
factors of VR software means that extra graphics power, CPU
speed, and memory will lead to better performance. Along
these lines, the project FAQ suggests that a workstation “less
than two years old” should be adequate to operate Croquet
[56].

6.2. Project Wonderland

Sun Microsystems’ Project Wonderland was motivated by
perceived deficiencies in telecommuters’ collaborative experi-
ences. Specifically, Sun wanted to leverage CVE technology
as a means to better integrate remote employees with their
actual place of business and related work resources [57]:

Organizations should be able to use Wonderland
to create a virtual presence to better communicate
with customers, partners, and employees. Individu-
als should be able to do their real work within a
virtual world, eliminating the need for a separate
collaboration tool when they wish to work together
with others.

Implemented in Java and leveraging the Java3D API for
graphics rendering, Project Wonderland offers a substantial
platform for building CVEs. Though not as mature as Croquet,
it nevertheless includes the same staple components: graphics
(OpenGL or DirectX), network support, spatial sound, and
multi-user capabilities with avatars. In addition, Java’s cross-
platform nature makes Project Wonderland available for users
of Apple’s OS X, Linux, Sun Solaris, and Microsoft Win-
dows. Similar to Croquet, Project Wonderland comes as a
fully functional CVE (including the ability to collaboratively
share X Window applications), however, unlike Croquet, it
is largely client-server oriented in its architecture7 Its client
and server components are based on two other open source
Sun products: Project Looking Glass and Project Darkstar,
respectively. Project Looking Glass and Java3D are used in
combination to provide the 3D rendering for Project Won-
derland; more specifically, Looking Glass offers APIs for
building 3D applications and windowing environments. The
Project Darkstar game server provides a “fully distributed,
fault tolerant communication and event processing system
[59].” It is through Darkstar that state and persistence are
managed for all objects comprising a given virtual world.

The challenges facing Project Wonderland continue the sim-
ilarities with Croquet. First, like Croquet, Project Wonderland
is not currently in a polished and stable state. Deployment
and troubleshooting require some level of Java programming
and systems administration skill; this could make the Project
Wonderland client difficult for typical end users to handle.

7Conceptually, Project Wonderland uses peer-to-peer communications in
some areas. For example, avatar motion data are transmitted among par-
ticipants through peer-to-peer channels [58]. These channels, however, are
managed by the Wonderland server component.

Next, depending on the platform, the bundle for Project
Wonderland can range from 130 to 150 megabytes—this does
not include the size of the Java runtime environment, should
it be missing. Of course, the option of deployment through
Java Web Start does exist and could simplify matters. Finally,
Project Wonderland’s features make it a resource intensive
system: the need for a modern, speedy CPU (1.5 GHz or
better), a graphics adapter with hardware acceleration, and
a gigabyte or more of RAM precludes the use of older
equipment [57].

VII. A SIMPLE RISK ASSESSMENT

As mentioned earlier, the aim of this survey is twofold:
first, to concisely review several prominent, active desktop-
VR technologies, and, second, to recommend one or more of
these technologies most well suited to building a CVE. In this
section we make our recommendation.

Pressman notes that “the software engineering environment
supports the project team, the process, and the product. But
if the environment is flawed, it can be the source of signif-
icant risk [60, pp. 139-140].” Hence, it is important that our
recommendation be risk savvy—that is, it should consider
the development environment risks that effect each of the
technologies we survey in earlier sections. To accommodate
this, we undertake a simple, qualitative risk assessment of the
16 technologies. Our assessment is not all encompassing: for
accessibility and expedience we look at the major development
environment risks comprising the limitations of the technolo-
gies. Also, because this is a qualitative exercise, there is some
degree of subjectivity involved. Nevertheless, we believe there
is value in the assessment, since the risks we measure are easy
to understand, gage, and compare across the 16 technologies.
Table 2 captures our assessment.

We calculate the overall risk for a given technology by
adding up the products of likelihood and impact across several
specific risks:

Risk =
∑

i

(Likelihoodi × Impacti)

Likelihood indicates the perceived chance of something
unwanted happening and impact denotes how significant (on
a scale of 1 to 5, with 1 being minimal) the outcome will be.
The risks we measure include:

• Primary Features Missing – likelihood of 50% for either
feature absent (graphics [G] and network [N]); impact of
5

• Audio Missing – likelihood of 100% if audio is absent
(A); impact of 2

• Lack of Utility – likelihood of 50% for each CVE-
oriented feature missing (proprietary, H-Anim, or other
avatar support [V]; multi-user support [M]); impact of 3

• Support Missing – likelihood of 25% for each type of sup-
port material missing (basic user/administrator/developer
documentation [D], multiple tutorials [T], one or more
forums to post questions and interact with a development
community [F], and a means to track bugs [B]); impact
of 4
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• VR Standard Missing or Not Current – likelihood of
100% if there is no standard, 50% if a standard is not
up-to-date; impact of 3

• Immature Technology – likelihood of 10% for each year
less than ten; impact of 2

• Deployment Challenges – likelihood of 33.3% for each
constraint (install package is 20 megabytes or more
[L], special expertise required of the end-user [E], extra
computing resources recommended [X]); impact of 1

Regarding the Deployment Challenges risks, it is difficult to
accurately estimate how large an API, framework, or platform
will be when deployed: the inclusion or exclusion of optional
features, utilities/tools, and optimizations can lead to very
different footprints for the same technology. Hence, we make
a best effort to determine whether the size of a default instal-
lation falls above or below a 20 megabyte watermark. This
watermark was arrived at by presuming a download rate of
128,000 bits per second (a very modest high-speed line), which
is equivalent to 15.6 kilobytes/sec, or 20 megabytes in a little
more than 20 minutes. For a 56K dial-up modem (presuming
52,000 bits per second due to good line conditions), this
works out to 20 megabytes in less than an hour. Our belief is
that most end-users would not wait more than 20 minutes to
download CVE software, and fewer still would wait an hour.

Our desire is to select a technology that minimizes the over-
all risk. The largest quantity that could theoretically appear in
Table II’s Risk column is 20—given by the sum of the impacts
for each individual risk. Happily, most of the technologies in
our survey score around or below half of this maximum, with
the least risky being Xj3D (2.63) and the most risky being
FreeVR (13). Thus, we believe the technology that is most
conducive to building and deploying CVEs is Xj3D.

There are, however, some remarks to be made about
this selection. First, it is noteworthy that among the three
least risky technologies (Xj3D, Wonderland, and Croquet),
deployment risk counts for much of the overall score. In
particular, if we ignore the need for end-user expertise
and additional computing power, the risks for Wonderland
and Croquet drop to 2.13 and 2.63, respectively. Putting
Wonderland in first place and tying Croquet with Xj3D
may be a more accurate reflection of overall risk if we are
unconcerned about our end-users’ capabilities and resources.

Next, this risk assessment tries to compare apples with
apples across all technologies in the survey; this means
an important feature specific to a given technology may
not factor into the assessment. In the case of Croquet, for
example, atomicity and synchronicity of multi-user activities
are guaranteed: such a characteristic may be critical for some
CVE applications. Finally, although a best effort is put forth
to make reasonable choices, one should bear in mind that
this is a qualitative risk assessment. Even a modest change
in perspective on the 16 technologies could lead to different
selections for likelihood and impact and, thus, a different
outcome.

VIII. CONCLUSION

The boon of VR has been somewhat muted as a result of
technology solutions that are redundant and/or incompatible.
This circumstance has worked against the acceptance and
integration of VR as a common computing interface. In an
effort to untangle some of the overlap and differences among
significant desktop-VR technologies, we have surveyed 16
current, open source solutions (grouped as APIs, frameworks,
and platforms). During this review we discussed the strengths
and challenges for each technology relative to the goal of con-
structing a CVE. We then undertook a simple, qualitative risk
assessment to make a determination of which technology was
the most well-suited to building a CVE. A given technology’s
risk was found by summing the products of likelihood and
impact along an axis of seven development environment risks.
This axis was drawn from the issues and limitations uncovered
by our earlier review of the 16 technologies, and included
consideration for the presence of CVE-oriented features that
could aid the development process. Although we concluded
that Xj3D is the technology most well-suited to building and
deploying a CVE, even a minor shift in what is considered
important about the surveyed technologies could change the
risk assessment’s outcome. For example, Project Wonderland
becomes the least risky technology if we ignore the deploy-
ment needs of end-user expertise and computing power.
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