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Abstract. This work treats the problem of error-resilient DNA searching via
oblivious evaluation of finite automata, where a client has aDNA sequence, and
a service provider has a pattern that corresponds to a genetic test. Error-resilient
searching is achieved by representing the pattern as a finiteautomaton and eval-
uating it on the DNA sequence (which is treated as the input),where privacy of
both the pattern and the DNA sequence must be preserved. Interactive solutions to
this problem already exist, but can be a burden on the participating parties. Thus,
in this work we propose techniques for secure outsourcing ofoblivious evaluation
of finite automata to computational servers, such that the servers do not learn any
information. Our techniques are applicable to any type of finite automata, but the
optimizations are tailored to the setting of DNA searching.

1 Introduction

The need to protect private or sensitive information about an individual is widely rec-
ognized. Recent advances in bioinformatics and biomedicalscience promise great po-
tential in our ability to understand and compute over genomedata, but the DNA of an
individual is highly sensitive data. In recent years, several publications appeared that
allow for computing over DNA data in a private manner with thepurpose of identi-
fying ancestry relationships or genetic predisposition. In particular, results are known
for sequence comparisons that compute the edit-distance [3, 18], error-resilient pattern
matching based on finite automata (FA) evaluation [28, 14], and specific DNA process-
ing for the purposes of ancestry testing [8].

DNAs or DNA fragments used in such computations are large in size. For that rea-
son, recent work [18, 29] concentrated on improving the efficiency of such protocols,
but they still remain computation- and communication-intensive. Thus, if a customer
would like to engage in a private computation that uses her DNA, she might not neces-
sarily have computational resources and/or bandwidth to carry out the protocol. When
this is the case, it is natural to consider outsourcing the computation to powerful servers
or a large distributed network such as a computational grid.Obviously, in such a setting
the privacy of all sensitive inputs (the customer’s DNA, theservice provider’s tests, etc.)
must be preserved from the servers participating in the computation.

Results for privacy-preserving outsourcing of the edit distance computation of two
strings are known [4, 5], but outsourcing of more general type of computation over DNA
via finite automata has remained unexplored. Thus, the focusof this work is on secure
outsourcing of oblivious evaluation of a finite automaton ona private input. We use the



work of Troncoso-Pastoriza et al. that pioneered techniques for oblivious finite automata
evaluation (OFAE) [28] as a starting point for out solution and develop techniques for
outsourcing such computations.

Using FA for DNA searching and matching is motivated by the fact that queries
to DNA data need to take into account various errors such as clinically irrelevant mu-
tations, sequencing errors, incomplete specifications, etc. Such errors can be tolerated
if the pattern is expressed using regular expressions, implemented as FA. We refer the
reader to [28] for a more detailed description of the types ofsearching and alignment
algorithms that can be implemented using this technique. Then a service provider (such
as, e.g., 23andMe [1]) can build a FA that implements a genomic test, and a customer
who possess a private DNA sequence will use it as an input to the automaton. A DNA
sequence is specified as a string of characters over the alphabetΣ = {A, C, T, G} of
lengthN , and a deterministic finite automaton (also called a finite state machine (FSM))
corresponding to a DNA test is specified as a tupleM = (Q, Σ, ∆, q0, F ), whereQ is
a finite set of states,Σ is a finite alphabet,∆ : Q× Σ → Q is the transition function,
q0 ∈ Q is the initial state, andF ⊆ Q is the set of final states. Without loss of gener-
ality, the transition matrix is assumed to be complete, i.e., it specifies a transition from
each state on each input, and can be represented as a table of size |Q|× |Σ|, where each
value stores a state. The states are represented as integersin Z|Q| and input characters
are represented as integers inZ|Σ|. A FA M accepts a stringx = x0x1. . .xN−1 ∈ ΣN

if on inputx it transitions fromq0 to a stateqN ∈ F .

Contributions. Our contributions can be summarized as follows:
– We first show how the solution of [28] can be simplified to improve both the com-

putation and communication in practice for typical values of the parameters (i.e.,
when |Σ| is small). We also provide a detailed analysis of both the original and
modified solutions (more specific than just asymptotic analysis) and show that the
communication cost can be rather high and not suitable for all clients. Since most
of the communication overhead of the solutions comes from the oblivious trans-
fer (OT) protocol, we analyze the performance of the protocols using different OT
realizations that allow us to achieve a computation-computation tradeoff.

– We then give a protocol for outsourcing the computation of both the client and the
FA owner (service provider) to two computational servers without increasing either
the communication or computational complexity of the protocol. The communica-
tion complexity of the client and service provider becomes linear in the size of their
data and involves virtually no computation.

– Next, we give a protocol that works for outsourcing the computation to any number
of servers (i.e., the multi-party case). To minimize the overhead, we use a differ-
ent structure from that used in the two-party outsourcing solution. To lower the
communication complexity (and in part the computation overhead), we represent
the transition matrix∆ as a square, so that the communication is decreased from
O(|Σ|+ |Q|) to O(

√

|Σ||Q|).
– We also develop a threshold version of the multi-party outsourcing protocol which

makes the solution suitable to work in unstable or dynamic environments such as
grids. Due to space limitation, it could not be included in this article and can be
found in the full version [7].



2 Related Work

There is a considerable number of publications on secure DNAcomparison and match-
ing (see, e.g., [3, 5, 27, 28, 8, 19]). The majority of them (such as [3–5,18, 29]) use dy-
namic programming (DP) to securely compute the edit distance between a pair of ge-
nomic sequences: There are two parties, each holding its respective sequence, and the
algorithms compute the edit distance between the sequenceswithout revealing any in-
formation besides the output. Since the DP techniques involve computation quadratic in
the size of the inputs, such solutions are computation and/or communication heavy. For
that reason, consecutive work [4, 5] considered outsourcing the edit distance computa-
tion to more powerful helper servers, and another line of research [18, 29] concentrated
on making such solutions more efficient. Related to them, [13] gives secure computa-
tion and outsourcing of the longest common subsequence (LCS) using an optimized DP
algorithm and a communication-efficient Private Information Retrieval protocol [15].
This work is continued in [17] and gives secure structures for the LCS computation and
privacy-protecting equivalence and sampling algorithms for finite regular languages.

While these techniques are likely to improve the communication and/or computa-
tion complexity of the original DP solution, one might consider the edit distance com-
putation to be a specific type of DNA comparison that might notbe suitable when, e.g.,
error-resilient searching is necessary (handling sampling errors, incomplete specifica-
tions, etc.). For that reason, another line of research [28,14] uses FSMs to implement
error-resilient searching over DNA data, and can support any searches that can be for-
mulated as regular languages. These publications provide secure two-party protocols
for OFAE, which can be used in any context and is not limited toDNA searching.
We use the first publication in this domain [28] as a starting point for our outsourcing
construction. A follow-up work [14] uses techniques similar to generic Boolean circuit
evaluation to significantly lower the round complexity of the protocol (fromO(N) to
O(1)) and lower the computation complexity as well. The circuit-based approach, how-
ever, does not generalize to the outsourcing scenario, since it assumes that the function
to be evaluated (i.e., a FA in our case) is known to the participants. Similarly, other
general secure function evaluation approaches are not suitable for the same reason.

Other work on privacy-preserving computing over DNA data includes [27], where
the authors introduce a strategy for enhancing data privacyin a distributed network de-
ploying the Smith-Waterman algorithm for sequence comparison. In [8], the authors
build secure multi-party protocols for specific genetic tests such as parental tests; the
approach can also handle a small number of errors, but the complexity of the protocol
rapidly increases with the number of errors it can tolerate.Lastly, [19] presents a cryp-
tographic framework for executing queries on databases of genomic data, where data
privacy is achieved by relying on two non-colluding third parties.

3 Preliminaries

Homomorphic encryption. Prior and our work relies on a semantically secure homo-
morphic public-key encryption scheme. Let a public-key encryption scheme be defined
asE = (Gen, Enc, Dec), whereGen is a key generation algorithm that, on input a se-
curity parameter1κ, produces a public-private key pair(pk, sk); Enc is an encryption



algorithm that, on inputpk and messagem, produces a ciphertextc; andDec is a de-
cryption algorithm that, on input(pk, sk) and ciphertextc, produces decryption ofc
m. For brevity of exposition, we use notationEncpk(m) andDecsk(c). Let n denote
the public modulus associated a public keypk; the message space is thenZ

∗
n. In our

description we will assume that|n| = κ.
With homomorphic encryption, operations on ciphertexts translate into certain oper-

ations on the underlying plaintexts. For additively homomorphic schemes,Encpk(m1) ·
Encpk(m2) = Encpk(m1 +m2), which impliesEncpk(m)a = Encpk(m ·a) for known
a. A ciphertextEncpk(m) can be re-randomized by multiplying it toEncpk(0); this
makes it infeasible to link the new ciphertext to the original one.

Oblivious transfer. A 1-out-of-t oblivious transfer, OTt1, allows the receiver to retrieve
one item from thet items at the sender in such a way that the receiver does not learn
anything other than the item it received and the sender learns nothing. This is a heavily
studied cryptographic tool, with many available realizations. The use of different OT
protocols from the literature allows one to achieve tradeoffs between sender computa-
tion, receiver computation, and their computation. In particular, OTt

1 protocol from [25]
has very efficient amortized cost (one modulo exponentiation per OT for both the sender
and the receiver) and linear communication costO(t). Other protocols (e.g., [21, 15])
can achieve sub-linear communication, but generally have larger computation require-
ments. Depending on the parameters used in OFAE (such as the number of states, input
length, etc.) and resources available to the participants,one scheme might be preferred
over another. We use different OT schemes in our detailed analysis in Section 5.

Oblivious evaluation of finite automata.Here we review the solution of [28], which
is used as a starting point in this work. The service providerS holds∆ and the client
C holds inputx. The evaluation processes one input character at a time, andthe current
state is shared betweenC andS modulo|Q|. Throughout this paper, we will assume
that the rows of the matrix are numbered 0 through|Q| − 1, and the columns of the
matrix are numbered from 0 to|Σ| − 1. The solution consists of three sub-protocols:
(i) a protocol for performing the first state transition, (ii) a protocol for executing a
generalkth state transition (fork = 1, . . ., N − 1), and (iii) a protocol for announcing
the result to the client. Our description of the (main)kth state transition protocol here is
slightly different from its original presentation in [28]:it is described for a transposed
matrix to improve efficiency of the protocol (as was suggested in [28]). We will useqi

to denote the current state in the execution after processing i input characters. Notation

a
R← A means thata is chosen uniformly at random from the setA. The protocol uses

a homomorphic encryption schemeE for whichC knows(pk, sk) andS knowspk.

Protocol for 1st state transition.This protocol allowsC andS to evaluate the automa-
ton on the first input symbol, i.e., computeq1 = ∆(q0, x0), and share it in an additively

split form, i.e.,S learnsq(1)
1 andC learnsq(2)

1 such thatq(1)
1 + q

(2)
2 mod |Q| = q1.

1. S choosesr
R← Z|Q| and blinds each value in rowq0 by addingr to it modulo|Q|.

2. The parties engage in an OT|Σ|
1 , where the senderS uses the blinded rowq0 as its

database and receiverC retrieves the element at positionx0.

At the end,S hasq(1)
1 = −r mod |Q| andC hasq(2)

1 = q1 + r mod |Q|.



Protocol for kth state transition. In the beginning of the protocol,C andS additively
share thekth state (i.e.,S hasq(1)

k andC hasq(2)
k such thatqk = q

(1)
k + q

(2)
k mod |Q|);

C also holds the next input characterxk andS holds the transition matrix∆. The output
consists ofC andS additively sharing the(k + 1)st stateqk+1.

1. S choosesr
R← Z|Q| and blinds each element of∆ by addingr to the element

modulo|Q|. S rotates the matrixq(1)
k rows up to obtain modified matrix by∆k.

2. C generates a binary vector of length|Σ| consisting of a 1 at positionxk and 0’s
in other positions.C encrypts the vector withpk and sends encrypted bitse =
(e0, . . ., e|Σ|−1) to S, where eachei = Encpk(bi) andbi ∈ {0, 1}.

3. S performs matrix multiplication ofe and∆k using the homomorphic properties
of the encryption. As a result,S obtains a new vectorv = (v0, . . ., v|Q|), that
corresponds to an element-wise encryption of the column at positionxk.

4. Both parties engage in an OT|Q|
1 , whereS plays the role of the sender using vector

v andC plays the role of the receiver and retrieves the element at position q
(2)
k .

5. C decrypts the value and obtains its shareq
(2)
k+1, whileS sets its share toq(1)

k+1 = −r.

Protocol for announcement of result.In the beginning of the protocol,C andS ad-
ditively share stateqN modulo|Q|. As a result of this protocol,C learns whether the
evaluation resulted in an accept state or not, i.e., it learns a bit.
1. S generates a random binary vectorf of length|Q| by setting its element at position

j + q
(1)
N to 1 if the statej ∈ F , and to 0 otherwise.

2. Both parties engage in an OT|Q|
1 , whereS plays the role of the sender using vector

f andC plays the role of the receiver and retrieves the element at positionq
(2)
N .

4 Security Model

We identify the requirements that a scheme for secure outsourcing of OFAE must meet:
Correctness: The protocol computation should provide the client with correct evalua-

tion of the service provider’s finite state machineM on the client’s inputx.
Efficiency: Communication and computation complexity ofC (S) should be linear in

the size of its inputx (in the size of the automatonM (i.e., the size of∆), respec-
tively). Communication and computation complexity (including round complexity)
of the servers should be minimized if possible.

Security: The servers should not learn any information throughout theprotocol execu-
tion. We assume that the servers are trusted to perform theircomputation correctly,
i.e., they are semi-honest or honest-but-curious in that that they will follow the
protocol as prescribed, but might attempt to learn additional information from the
intermediate values.

We now can formally define security using the standard definition in secure multi-party
computation for semi-honest adversaries. Since the computational servers do not con-
tribute any data to the computation, this should be interpreted as no private input to the
function they are evaluating. Then for the purposes of the security definition, all data the
servers receive before or during the computation (i.e., thetransition matrix and client’s
input) will be considered to be a part of the function evaluation and therefore must not
leak any information. We denote “no data” by a special character⊥.



Definition 1. Let partiesP0, . . ., Pm−1 engage in a protocolπ that computes function
f(⊥, . . .,⊥) = (o0, . . ., om−1), whereoi denotes output of partyPi. LetVIEWπ(Pi)
denote the view of participantPi during the execution of protocolπ. It is formed byPi’s
input and any internal random coin tossesri, as well as messagesm1, . . ., mt passed
between the parties during protocol executionVIEWπ(Pi) = (⊥, ri, m1, . . ., mt). We
say that protocolπ is secure against semi-honest adversaries if for each partyPi there
exists a probabilistic polynomial time simulatorSi such that{Si(f(⊥, . . .,⊥))} ≡
{VIEWπ(Pi),⊥}, where≡ denotes computational indistinguishability.

Note that this standard model allows the computational servers to collude with each
other (i.e., share the information) in the multi-party case. The security guarantees must
hold as long as the coalition size does not exceed a specific threshold. The computa-
tional servers do not receive any output, but rather communicate the result toC.

5 Secure FSM Evaluation

Before proceeding with outsourcing solutions, we give a simplification of the original
approach that simultaneously improves communication and computation requirements
for DNA computation. Our simplification involves representing the matrix∆ as a one-
dimensional list (as opposed to a two-dimensional table), and does not affect either
the functionality or security of the solution while allowing us to skip encryption and
manipulation of encrypted data. When we represent the matrix as a one-dimensional
list, we reference element(i, j) of the matrix as the element at index|Σ|i+ j in the list.

Protocol for 1st state transition.The same as before.

Protocol for kth state transition. Prior the protocol,C andS additively share thekth
state modulo|Q|, and the output of the protocol consists ofC andS additively sharing
the(k + 1)st state.

1. S choosesr
R← Z|Q| and blinds each element of∆ by addingr to it modulo|Q|.

2. S rotates the matrix∆ q
(1)
k rows up. Let∆k denote the modified matrix.S then

represents∆k as a list of|Q| · |Σ| elements.

3. C andS engage in OT|Q|·|Σ|
1 , at the end of whichC obtains the element at position

|Σ| · q(2)
k + xk from the list corresponding to∆k.

Protocol for announcement of result.The same as before.

We now can compare performance of the protocol above with theoriginal solution
from [28]. As suggested in [28], we assume that the efficient OTt

1 protocol with amor-
tized single exponentiation per transfer [25] is used. Also, since in this application
|Σ| ≪ |Q|, we assume that the transition matrix is transposed (as presented in Sec-
tion 3) to result in maximal savings from the OT protocol.

In the analysis, we include all modular exponentiations andalso count modular mul-
tiplications if their number is large; the overall complexity is expressed in the number
of modular exponentiations (1 mod exp= κ mod mult). The results fork executions
of the main state transition protocol are presented in Table1 (the rest of the work is
significantly lower). In the original scheme, in each protocol round,C performs|Σ|



Original [28] Modified
C’s exps (|Σ| + 2)N N

S ’s exps|Q| + N(1 + (log(|Q|)|Σ| + |Σ| − 1)|Q|/κ) |Q||Σ| + N(1 + |Σ||Q|/κ)

Comm 2κN(|Σ| + |Q|) log(|Q|)N |Σ||Q|
Table 1.Analysis of original and modified oblivious automata evaluation solutions.

encryptions, 1 decryption, and 1 modular exponentiation (for the OT protocol).S ’s
work to execute one OT protocol involves|Q| + 1 modular exponentiations and|Q|
modular multiplications. To process the client’s responsein each round, it performs
|Q||Σ| modular exponentiations with small exponents (or lengthlog |Q|), which re-
sults in N(log(|Q|)|Σ|)/κ regular modular exponentiations overall. Since the client
sends|Σ| encrypted values and the OT protocol involves the transfer of |Q| encrypted
messages in each round, the overall communication is2κN(|Σ|+ |Q|).

In the modified scheme, only OT is used, and thusC’s work drops by a factor of
|Σ| + 2. S ’s work is also lowered, as the dominating term in the original solution is
|Q||Σ|N log(|Q|)/κ, while in the modified scheme it is|Q||Σ|N/κ. This means that
the server’s work drops by a factor oflog |Q| (which is an improvement by at least an
order of magnitude). Even though the communication complexity is now proportional
to N |Σ||Q| instead ofN(|Σ| + |Q|) in the original protocol, it can be two orders of
magnitude lower due to the overhead caused by the security parameterκ in the original
solution (that is, for any feasible finite automaton size,log |Q| ≪ κ; a typical setup can
consist oflog(|Q|) ≤ 20, |Σ| = 4, andκ = 1024).

One of our original motivations for conducting this analysis was large communi-
cation overheads of the scheme. For instance, genome sequences can be billions of
characters long, but even with the current ability to samplethem, the sequences are in
the thousands. The FSM that represents a search pattern can have significantly more
states than the length of the pattern itself due to the need tohandle errors. Thus, for a
sample setup ofN = 10, 000, |Q| = 50, 000, andκ = 1024, the communication cost
of the original solution is1012 bits≈ 0.125 TB (this is lowered to≈ 3 · 1010 bits in
the modified solution). This amount of communication is prohibitively large for many
clients (e.g., it can take several days or even months on a reasonably fast DSL link).
Thus, we investigate the use of other OT protocols, which canlower the communica-
tion requirements of the protocol. Then depending on the computation resources and
the bandwidth one has, the most suitable choice can be used.

Besides existing OT protocols, the OT functionality can be achieved by utilizing
an efficient Private Information Retrieval (PIR) protocol,in which the receiver may
learn additional information about the database besides the item or block it retrieves,
and the sender learns nothing. Transferring a PIR protocol to a Symmetric PIR (SPIR)
protocol (in which privacy of the database is also preserved, and the receiver learns
information only about a single item) can be done at low computation and communica-
tion cost using the techniques from [24] or [11], which will give us an OT protocol. We
chose to compare the performance of OFAE using three recent and efficient PIR proto-
cols, which make use of very different techniques. In particular, several PIR protocols
(such as [9, 20, 26, 21, 15]) were studied in [23], and we select most communication



Lipmaa OT GR OT AG OT
C’s op. K1N log(|Q|)(log(|Q|)/2 − 1) (4NKe

p

|Q|) N(Klog 10
3 + 2Klog 5

3 + |Q|Ke)

S ’s op. (2|Q| − log(|Q|))K1N 2|Q|KeN NK2
3

Comm N((K1/2) log2(|Q|)+ N(log(|Q|) + Ke + 4 N |Q|KeK
2
3

+3Ke log(|Q|)) + log(log(|Q|)))

Table 2.Performance of the original OFAE protocol (except matrix multiplication) using differ-
ent OT protocols.

Lipmaa OT GR OT AG OT
C’s op. K1N log(|Q||Σ|)× (4N log(|Q|)

p

|Q||Σ|) N(Klog 10
3 + 2Klog 5

3

×(log(|Q||Σ|)/2 − 1) +|Q||Σ| log(|Q|))

S ’s op. (2|Q||Σ| − log(|Q||Σ|))K1N 2|Q||Σ| log(|Q|)N NK2
3

Comm N((K1/2) log2(|Q||Σ|)+ N(log(|Q||Σ|) + log(|Q|)+ N |Q||Σ| log(|Q|)K2
3

+3 log(|Q|) log(|Q||Σ|)) +4 + log(log(|Q||Σ|)))
Table 3.Performance of the simplified OFAE protocol using differentOT protocols.

efficient solutions of Lipmaa [21] and Gentry-Ramzan (GR) [15], as well as a more
recent lattice-based protocol of Aguilar Melchor-Gaborit(AG) [2] which has very light
computation overhead. We replace the original OT protocol ([25]) by an OT protocol
based on one of those three PIR protocols in both OFAE protocols of Sections 3 and 5.

Before presenting our analysis, we need to point out the differences between these
protocols because they are based on different setups, whichwill require the use of differ-
ent security parameters and underlying operations. More precisely, the Lipmaa’s proto-
col is based on the use of a length-flexible additively homomorphic encryption scheme
(such as [12]), the GR protocol uses groups with special properties (in whichΦ-hiding
assumption holds), and the AG protocol is a lattice-based PIR scheme. Thus, to achieve
as precise analysis as possible, we measure the computationoverhead in the number of
group operations, and describe what a group operation involves in each solution.

The complexity analysis of the original OFAE approach (except the matrix multi-
plication over an encrypted vector and∆ in step 3 of thekth state transition protocol in
Section 3) is given in Table 2, where work is measured in groupoperations. The matrix
multiplication overhead (the same regardless of the OT protocol used) is given below:

Matrix Multiplication
C’s group op. (|Σ| + 2)KeN

S ’s group op.N |Q|Ke(log(|Q|)|Σ| + |Σ| − 1)

Comm NKe(|Q| + |Σ|)

Similarly, Table 3 presents analysis of our modified scheme.In the tables,K1, K2, and
K3 are security parameters for each scheme andKe is the security parameter for the
homomorphic encryption scheme (i.e.,Ke = κ). In Lipmaa’s solution,K1 is the same
asKe, and thusK1 = κ, which can be set to 1024. (The table reports performance
of the original Lipmaa’s protocol; however, according to [6], the sender’s computation
cost can be reduced by almost 38% through optimization.) In GR approach,K2 is a
security parameter of a similar length, but it also depends on the configuration of the OT



protocol for which it is used. In particular,K2 = max(κ, ℓ, f(log(t))) for OTt
1, where

ℓ is the size of an element in the OT protocol andf(·) is a polynomial function.K2 is
not used in the tables, but it determines the cost of the groupoperation (multiplication
moduloK2-bit numbers). Note that in the original solution, the OT protocol is called
on blocks of size2κ, and to reduce the computation overhead of operating over very
large numbers, each block can be partitioned into several blocks of smaller size (so that
the OT protocol will need to be executed more than once).

In the AG solution, the value of the security parameterK3 is suggested to be set
to 50, but the group operations are performed using elements inZp for primep of size
3(⌈log(tK3)⌉+ 1) on the database of sizet. Note that the value oft in OTt

1 is different
in the original and modified solutions (|Q| and|Q||Σ|, respectively), which will affect
the overhead associated with group operations when they depend ont.

From these options, the AG solution has the highest communication cost (which
can be further increased to lower the computation), but it isvery computation efficient
unlike other protocols (also see [22] for further discussion). Thus, it is ideally suited
for parties with very fast communication links. The GR approach, on the other hand,
has the lowest communication cost, although the amount of computation carried on the
server side as well as the client side are more pronounced. Thus, the first two methods
based on Lipmaa’s and GR PIR schemes should be used when the bandwidth is an issue
of consideration, while the third approach gives the fastest performance with respect to
the execution time assuming a fast data link between the participants.

6 Secure Outsourcing of FSM Computation

6.1 Secure two-party outsourcing

The idea behind this solution is that the clientC additively splits (modulo|Σ|) each
character of itsx between computational serversP0 andP1. Likewise,S splits (modulo
|Q|) each element of its matrix∆ betweenP0 andP1. We refer to thePi’s share (fori =

0, 1) of the stringx asx(i) and its share of thekth character ofx asx
(i)
k . Similarly, we

refer to thePi’s share of∆ as∆(i) and its share of the element of∆ at position(j1, j2)
as∆(i)(j1, j2). The computational servers are also givenq0, i.e., they know what row in
the matrix is the starting state (which gives no informationabout the automaton itself).
Finally, P0 andP1 also receive information about final statesF in a split form. We
representF as a bit vector of length|Q| that hasjth bit set to 1 iff statej ∈ F . This
vector is additively split modulo 2 (i.e., XOR-split) betweenP0 andP1.

During thekth state transition,P0 acts asS in the previous solution andP1 asC,
except that the share of the matrixP0 possesses is rotated by bothP0’s share of the next
input characterx(0)

k and its share of the current stateq
(0)
k . At the end of this execution,

P0 andP1 additively share some valueq′. The same steps are also performed with the
roles ofP0 andP1 reversed (usingP1’s share of the transition matrix), which results in
P0 andP1 additively sharing another valueq′′. Finally,P0 andP1 each locally add their
shares ofq′ andq′′, which results in stateqk+1 being split (modulo|Q|) between them.

Protocol for 1st state transition.



1. Fori = 0, 1, Pi chooses valueri
R← Z|Q|, blinds each element of rowq0 by adding

ri to it modulo|Q| and rotates the rowx(i)
0 elements left.

2. Fori = 0, 1, Pi engages in OT|Σ|
1 with P1−i, where the senderPi holds the modi-

fied rowq0, and receiverP1−i obtains the element at positionx(1−i)
0 , denotedsi.

3. Fori = 0, 1, Pi sets its share of stateq1 to q
(i)
1 = s1−i − ri mod |Q|.

Protocol for kth state transition. Prior to the protocol,P0 andP1 additively share the
kth stateqk (modulo|Q|), thekth input characterxk (modulo|Σ|), and each element
∆(i, j) of the transition matrix for0 ≤ i < |Q| and0 ≤ j < |Σ| (modulo|Q|). The
output consists ofP0 andP1 additively sharing the(k + 1)st stateqk+1 modulo|Q|.
1. Fori = 0, 1, Pi choosesri

R← Z|Q| and adds its to each∆(i)(j1, j2) modulo|Q|.
2. For i = 0, 1, Pi rotates the resulting matrix∆(i) q

(i)
k rows up andx(i)

k elements

left, and represents it as a list of|Q| · |Σ| elements, which we denote by∆(i)
k .

3. Fori = 0, 1, Pi engages withP1−i in OT|Q|·|Σ|
1 (wherePi acts as the sender), at

the end of whichP1−i obtains the element at position|Σ| · q(1−i)
k + x

(1−i)
k from

the database∆(i)
k prepared byPi. Denote the element thatP1−i retrieves bysi.

4. Fori = 0, 1, Pi sets its share of stateqk+1 to q
(i)
k+1 = s1−i − ri mod |Q|.

In the aboveq′ = s0 − r0 mod |Q| andq′′ = s1 − r1 mod |Q|, and alsoq(0)
k+1 =

s1 − r0 mod |Q| andq
(1)
k+1 = s0 − r1 mod |Q|.

Protocol for announcement of result.In the beginning,P0 andP1 share XOR-split
bit vectorF , and at the endC learns the bit ofF at positionqN .
1. Fori = 0, 1, Pi generates a random bitbi and blinds its vectorF (i) by XORing it

with bi. Pi then rotates itsq(i)
N bits left.

2. Fori = 0, 1, Pi engages inOT
|Q|
1 with P1−i, wherePi uses it modified vectorF (i)

as the sender andPi−1 retrieves the bitci at positionq(1−i)
N .

3. Fori = 0, 1, Pi sets it share of the result tof (i) = bi ⊕ c1−i.
4. P0 andP1 send their bitsf (0) andf (1) to C, who XORs them and learns the result.

6.2 Secure multi-party outsourcing

To generalize the above solution to multiple partiesP0, . . ., Pm−1, we first need to have
C andS split their data among all of them. For a split itema, we usea(i) to denote the
share partyPi has. Since now both the input characters and the current state will be split
amongm participants, any solution that involves data rotation by ashare of the state or
input character becomes more expensive. In particular, at leastm − 1 parties need to
rotate the data in a predetermined order using their own shares. This means that the data
to be rotated must be obfuscated from others (i.e., encrypted) when it leaves the owner
and it also means that each party needs to re-randomize the data to hide the amount
of rotation. With this (or any other secure) approach, the work performed by one party
in a single execution of the state transition protocol is inevitably O(|Q||Σ|) (and is
also a function of a security parameter), and we wish to minimize the amount of work
other parties need to perform, as well as their communication complexity. Therefore,
we reduce the overhead of most parties toO(

√

|Q||Σ|) by representing the transition



matrix ∆ as a two-dimensional array of size
√

|Q||Σ| ×
√

|Q||Σ|. The interaction is
then similar at the high-level to the interaction in the original protocol and proceeds as
follows: one party generates a vector of encrypted bits of size

√

|Q||Σ|, m− 2 parties
sequentially rotate and randomize it, and the last party performs matrix multiplication
to create a new vector of the same size. This vector is also passed tom − 2 parties for
rotation and re-randomization, after which the last party obtains the decryption of one
element of it. This process is repeated for each share of the transition matrix∆(i).

Our solution requires the parties to convert sharesv(i) of valuev additively split
modulon to additive shares of it modulo|Q|. To do this, the parties will need to compute
the quotientu = ⌊

∑m

i=1 v(i)/n⌋ and use it to adjust the shares. To prevent the parties
from learningu, we additively split it among the participants over integers. Since0 ≤
u < m, we defineB > m2κ′

, whereκ′ is a security parameter. Then if we hideu using

sharesr andu− r, wherer
R← [−B, B], the value ofu will be statistically hidden.

Finally, the parties now use a threshold homomorphic encryption scheme, in which
the public keypk is known to everyone, but the decryption keysk is split among the
parties. In this solution, we require allm parties to participate in decryption (i.e., use
(m, m)-threshold encryption), and the threshold multi-party solution given in [7] will
have the threshold set tot (i.e.,(t, m)-threshold encryption).

Before presenting the main protocols, we describe a sub-protocol,RotateAndShare,
that will be utilized in all of them, but will be called on different types of data. This
sub-protocol assumes that one party,Pi, has a vector, which will be encrypted, and
then rotated by a certain amount, re-randomized, and blinded by every party.Pi will
be the data owner and plays a special role in the protocol. Theamount of rotation is
determined by some value additively split among all parties(e.g., the current stateqk).
Blinding involves adding a random valueri to the encrypted contents by each party.
Then when the last party chooses an element of the vector, other parties jointly decrypt
that value for it. At this point, all parties jointly hold additive shares of the result modulo
n. As the last (and optional) step, they engage in the computation to convert the additive
shares modulon to additive shares modulo a different modulusn′.

RotateAndShare: The input consists of valuei, 0 ≤ i ≤ m−1, encryptionE with public
keypk, modulusn, and distributed secret keysk, final modulusn′ (if no conversion is
necessary,n′ is set to⊥), partyPi inputs vectorv = (v0, . . ., vℓ−1) and its lengthℓ,
and each partyPj , 0 ≤ j ≤ m− 1 inputs amount of rotationrt(j). The output consists
of the parties additively sharing valueo modulon′ (or modulon if n′ =⊥), which
corresponds to one of the values from vectorv.

1. Pi choosesri
R← Zn, adds it modulon to eachvj , and encrypts each result withpk

to obtaine = (e0, . . ., eℓ−1), whereej = Encpk(vj + ri) for j = 0, . . ., ℓ − 1. Pi

circularly rotates the elements ofe rt(i) positions left and sends the result toPi+1.
2. Pi+1 circularly rotates the vector it receivedrt(i+1) positions left. It also chooses

ri+1
R← Zn and multiplies each element of its resulting vector by different en-

cryptionsEncpk(ri+1) (or by the same encryption, but then re-randomizes each
element). This addsri+1 to the encrypted values.Pi+1 sends the result toPi+2.

3. Each ofPi+2, . . ., Pm−1, P0, . . ., Pi−2 sequentially perform the same steps atPi+1

using their respective values of randomnessr and rotation amountrt.



4. PartiesPi−2 and Pi−1 engage in OTℓ1, wherePi−2 plays the role of the sender
using the final encrypted vector andPi−1 plays the role of the receiver using in-
dex rt(i−1). This results inPi−1 obtaining an encryption of the value at position
(

∑m−1
j=0 rt(j)

)

mod ℓ in v blinded with
(

∑

j∈[0,m−1],j 6=i−1 rj

)

mod n. Pi−1 re-

randomizes the item it received (by multiplying it withEncpk(0)), asks the rest of
participants to decrypt it, and setsri−1 to the decrypted value.

5. Now, if the value ofn′ was not⊥, the parties re-share the result modulon′. To do
so, they need to compute the number of times the sum of the shares “wraps around”
the modulusn and use it in their computation. The parties engage in securemulti-
party computation, e.g., using a standard general multi-party Boolean circuit [16].
Here each party inputs its share, they jointly computeu = ⌊(∑m−1

j=0 rj)/n⌋ (e.g.,
by repeated subtraction ofn from the sum) and the output is additively shared over
the integers. That is, partyPj for j = 0, . . ., m−2 receives a randomsj ∈ [−B, B]

and partyPm−1 receivessm−1 = u−
∑m−2

j=0 sj .

6. PartyPj , for j = 0, . . ., m− 1, sets its outputo(j) to (sj · n− rj) mod n′.
We are now ready to present the main protocols of the multi-party outsourcing solution.

Protocol for 1st state transition.
1. Fori = 0, . . ., m−1, execute in parallel: partyPi setsv to be theq0th row of its ma-

trix ∆(i) and all parties executeRotateAndShare(i, E , pk, sk, |Q|, v, |Σ|, x(0)
0 , . . .,

x
(m−1)
0 ). Let o(j)

i denote the outputPj receives after such execution onPi’s data.

2. Fori = 0, . . ., m− 1, partyPi sets its share ofq1 to q
(i)
1 =

∑m−1
j=0 o

(i)
j mod |Q|.

Protocol for kth state transition. Prior to the protocol execution, the parties additively
share thekth stateqk (modulo|Q|), thekth input characterxk (modulo|Σ|), and each
element∆(i, j) of the transition matrix for0 ≤ i < |Q| and0 ≤ j < |Σ| (modulo|Q|).
At the end, they additively share stateqk+1 (modulo|Q|).

For i = 0, . . ., m − 1, perform the following steps in parallel using the share∆(i)

of the transition matrix.
1. Pi rotates the matrix∆(i) q

(i)
k rows up andx(i)

k elements left. We denote the re-

sulting matrix by∆(i)
k . Pi represents∆(i)

k as a two-dimensional array of roughly
square size as follows1: Pi computes the size of the first dimension of the matrix as
d1 = ⌈

√

|Q||Σ|⌉ and the size of the second dimension asd2 = ⌈|Q|/d1⌉|Σ|. Pi

then creates columns 0 through|Σ|−1 of the modified matrix using rows 0 through

d1 − 1 of ∆
(i)
k , columns|Σ| through2|Σ| − 1 using rowsd1 through2d1 − 1 of

∆
(i)
k , etc. In other words, the modified square matrix, denoted∆̃

(i)
k , is filled in

stripes of width|Σ| until all of |Q| rows are used (note that part of the square might
be incomplete due to rounding in the computation). Empty cells are then filled with
dummy entries to make it a full matrix of sized1 × d2.

2. PartyPi+1 creates a vector of encrypted valuese = (e0, . . ., ed1−1) using ho-
momorphic encryption, where the value at positionq

(i+1)
k mod d1 corresponds to

encryption of 1, and all otherej ’s correspond to encryption of 0.

1 In the current discussion we assume that|Σ| < |Q|, but the technique can be used when either
|Σ| < |Q| or |Q| < |Σ| (and it is not necessary for the matrix to be close to a square size).



3. PartyPi+1 sends the vector toPi+2, who performs a circular rotation of itq(i+2)
k

values left and re-randomizes the encrypted values. The encrypted vector is sequen-
tially processed by partiesPi+2, . . ., Pm−1, P0, . . ., Pi−1 who perform the same
operations asPi+2 using their respective shares ofqk.

4. Pi−1 sends the final vector̃e = (ẽ0, . . ., ẽd1−1) to Pi. Pi performs matrix multi-
plication usingẽ and∆̃(i) as follows: to compute thejth element of the resulting

vector v, performvj =
∏d1−1

ℓ=0 ẽ
∆̃

(i)
k

(ℓ,j)

ℓ . Now the vectorv corresponds to the

element-wise encryption of the row of the matrix̃∆
(i)
k at indexqk mod d1.

5. All parties execute a modified algorithmRotateAndShare(i, E , pk, sk, |Q|, v, d2,

(x
(0)
k , ⌊q(0)

k /d1⌋|Σ|), . . ., (x(m−1)
k , ⌊q(m−1)

k /d1⌋|Σ|)) with the following changes:
(a) The vectorv is already in an encrypted form, so no encryption is performed in

step 1 ofRotateAndShare.
(b) Instead of eachPj rotating the vector by amountrt(j), rotation is performed as

follows: nowrt(j) consists of two parts,rt(j)1 andrt
(j)
2 . Starting fromj = i,

partyPj divides the vectorv into blocks of size|Σ| and circularly rotates each

block rt
(j)
1 positions left, and then rotates the overall resulting vector rt

(j)
2

positions left.
(c) Using two different values for the amount of rotation also affects the oblivious

transfer in step 4 of the protocol. Now partyPi−1 selects the element at position
rt

(i−1)
1 + rt

(i−1)
2 |Σ|.

Let o(i)
j denote the output partyPj receives as a result of such execution.

After executing these steps on all shares of the database∆(i), partyPj sets its share of

qk+1, q(j)
k+1, to the sum of the values it received in step 5 of the protocol executions, i.e.,

q
(j)
k+1 =

∑m−1
i=0 o

(j)
i mod |Q|.

Protocol for announcement of result.Prior to the protocol, partiesP0, . . ., Pm−1 ad-
ditively share the stateqN and also share vectorF XOR-split between all of them.
1. Fori = 0, . . ., m− 1, execute in parallel: the parties callRotateAndShare(i, E , pk,

sk,⊥, F (i), |Q|, q(0)
N , . . ., q

(m−1)
N ). Let o(i)

j denote the output partyPj receives.

2. Fori = 0, . . ., m− 1, Pi computesf (i) =
∑m−1

j=0 o
(i)
j modn and sendsf (i) to C.

C recovers the result by computing bitb =
∑m−1

i=0 f (i) mod n.
The above protocol callsRotateAndShare without modulus conversion. The reason

is that the client can easily recover the result by adding theshares it received modulo
n. It, however, would involve less work for the client if, prior to sending the shares to
the client, they were converted to additive shares modulo 2 (i.e., XOR-shares). Then the
client’s work would consists of onlym − 1 bit XORs. Thus, if the client is extremely
weak, the above protocol can be modified to include modulus conversion at the cost of
the increased work for the computational servers.

Also note that the protocol for announcement of the result can have a similar struc-
ture to thekth state transition protocol if the vectorF is represented as a matrix of size
√

|Q|×
√

|Q|. Then the computation and communication complexity of all parties will
be reduced by a significant amount. But since this protocol isexecuted only once (as
opposed to thekth state transition protocol), we leave it in the simple formabove.



Remark.The above technique allow us to have communication associated with pro-
cessing a square two-dimensional grid to be linear in the size of its one dimension.
One might ask if it might be possible to further reduce the communication by repre-
sented the matrix as a high-dimensional hypercube and stillhave communication to be
proportional to its single dimension. Such technique was employed in private informa-
tion retrieval systems to dramatically decrease communication cost toO(ℓǫ) for any
ǫ > 0 [20] or O(log2(ℓ)) [21] with stronger privacy guarantees for a database of sizeℓ.
Here we note that such a solution would not work in our settingbecause decreasing the
dimension of the matrix (represented as a hypercube of any dimension) by one requires
interaction of all of the participants, and thus would involve communication close to
linear in the matrix size in our case (this technique worked for PIR systems when the
entire database is stored at a single location).

7 Analysis

We now evaluate correctness and security requirements and give complexity analysis.

Correctness.Correctness of the protocols follows by examination. That is, during each
round of the protocol, the parties additively share the value of the next state that can be
found in matrix∆(i) for each participantPi and add them all together to correctly share
the next state. The same applies to the protocol for announcement of the result.

Security. The argument for achieving security in presence of semi-honest parties that
we use in this solution is very standard, and is based on the following components:

– The composition theorem due to Canetti [10] states that composition of secure pro-
tocols remains secure. This means that the security of the overall solution reduces
to ensuring that sub-protocols or other tools used as a part of it are secure against
semi-honest adversaries.

– Semantic security of homomorphic encryption ensures that no information about
the underlying plaintext can be learned by observing its encryption. Threshold en-
cryption ensures that participation of a predefined number of parties (including all
parties) is necessary for decryption.

– Additive secret sharing ensures unconditional security aslong as there is at least
one honest party that does not collude with the rest of the participants.

Given the above, it is straightforward to build a simulator that will simulate the view of
the computational parties without access toC’s or S ’s data. That is, every time encryp-
tion is used, it can produce encryptions of random values that will be indistinguishable
from real data due to the security property of encryption, and every time shares are
used, it will also produce random shares that will be indistinguishable from the shares
used in the real execution. Since only secure and composablecomponents are used in
the protocols, the overall solution is secure as well.

Complexity. We analyze computation and communication complexity of two-party and
multi-party outsourcing protocols separately. The analysis corresponds to theN execu-
tions of thekth state transition protocol (as the rest of the overhead will be orders of
magnitude lower).

Two-party outsourcing:The clientC only splits its input between two servers, therefore
the computation is nearN (no cryptography is used) and communication is2N log(|Σ|).



The service providerS splits the representation of its automatonM among two servers,
with the computation being near|M | and communication approximately twice the size
of representingM (i.e., near|Q||Σ| log(|Q|)). Each computational server incurs com-
putation and communication overhead of bothC andS in the solution with no outsourc-
ing (as given in Table 1). That is, each server performs about|Q||Σ|+N(2+ |Σ||Q|/κ)
modulo exponentiations and communicates about2 log(|Q|)N |Σ||Q| bits.

Multi-party outsourcing:The work and communication ofC andS remain similar to
the two-party case, except that splitting of their data and communication needs to be
done form servers instead of two. This means that work becomes proportional tom
(with no cryptographic operations, as before), which forC meansmN and forS is
m|M |, and their communication ismN log(|Σ|) and nearm|Q||Σ| log(|Q|), respec-
tively. The computation and communication requirements for the computational servers
also now increase by a factor ofm and are as follows. The main computation overhead
comes from (i)2

√

|Q||Σ|(m − 1) modular exponentiations in each round due to re-
randomization; (ii)|Q||Σ| log(|Q|) modular multiplications in each round for matrix

multiplication; (iii) κ OT2
1 executions for the Boolean circuit and one OT

√
|Q||Σ|

1 in
each round. We assume that the OT protocol with low amortizedcost (one mod exp per
transfer) is used. The communication complexity is dominated by the transmission of
encrypted vectors and the OT protocol and is near4κ(m− 1)N

√

|Q||Σ|.

8 Conclusions

This work studies the problem of outsourcing oblivious evaluation of a finite state ma-
chine to computational servers. We present solutions for outsourcing the computation
to two (two-party) or more (multi-party) computational servers that rely on different
techniques. The two-party solution has the same complexityas secure computation by
the owners of the data themselves without outsourcing. An interesting research direc-
tion that remains is to explore the applicability of alternative techniques with the goal of
reducing the overhead of the protocol. In particular, it would be desirable to eliminate
executing multiple instances of the same protocol on different shares of the automaton
and use a single copy ofM instead.
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